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Abstract—We describe a technique for detection and tracking
of multiple targets using a multistatic sonobuoy array. The inno-
vation in the proposed algorithm is the use of a clustering step,
posed as Bayesian mixture estimation, to produce Cartesian
position measurements. These are passed to a sequential Monte
Carlo approximation of the multiple hypothesis tracker. The
improvement offered by the proposed algorithm compared to
an existing algorithm is demonstrated in a simulation analysis.

I. INTRODUCTION

Detection and tracking of underwater targets using a

field of active sonobuoys has recently attracted significant

research interest [1], [2], [3], [4], [5], [6]. This problem

involves determining the number of targets in the area

covered by the sonobuoy field and tracking their positions.

Measurements of the targets are obtained by the transmis-

sion of a signal (a “ping”) from a single source (sonobuoy),

and collection of reflected measurements at a number

of nearby receivers. Difficulties arise because of the low

detection probability in an underwater environment and

the non-linear relationship between the available position

measurements, which are typically in polar coordinates, and

the target state.

In [5] a Gaussian mixture approximation of the iterator-

corrector version of the CPHDF was proposed for target de-

tection and tracking and, based on this algorithm, a trans-

mitter scheduling algorithm was described. A rudimentary

technique for accounting for battery life constraints using

a discount factor was also proposed. The prime focus of

this paper is on the multitarget tracking problem in the

multistatic sonobuoy context.

The cardinalised probability hypothesis density filter

(CPHDF) [7] has been used in several papers for tracking in

multistatic sonobuoy systems [1], [3], [5]. The CPHDF, which

is developed in the random finite set (RFS) framework,

approximates the full multi-target posterior density by its

first-order moment and a cardinality, or target number,

distribution. Although the CPHDF performs well in some

scenarios, it has several shortcomings that make its use

problematic for tracking using a sonobuoy field. The first

weakness is that the exact multiple sensor CPHDF recur-

sion is intractable [8]. This is addressed using a Gaussian

mixture approximation of the iterated-corrector version of

the CPHDF in [5]. Another undesirable property arising

with the iterator-corrector CPHDF is that the result is

dependent on the order in which the receiver returns are

processed, although often in practise this dependence is

not significant.

These deficiencies have motivated the use of a new

approach based on the use of clustering as a pre-processing

step to accentuate target measurements and mitigate clut-

ter. The clustering step produces Cartesian position “mea-

surements" which are then used in a sequential Monte

Carlo implementation of the MHT. This approach has

been used, for instance, in [3], [9]. A challenge here is to

perform clustering with polar position measurements, each

referenced to a different set of axes.

Of more concern, is the effect identified in [10] whereby

a missed target detection causes the mass associated with a

tracked target to be distributed elsewhere in the state space

causing the track to be lost. This is particularly problematic

in sonobuoy tracking where the detection probability is

quite low and only a fraction of the surveillance area can

be observed from a single ping. Particle filters (PFs) have

been used for approximation of the full multi-target pos-

terior density in [2]. While offering asymptotically optimal

inference, PFs generally require considerable computational

resources.

We propose a new approach in which a clustering pre-

processing step is used to accentuate target measurements

and remove clutter measurements. We develop a Bayesian

mixture estimation algorithm for forming clusters in Carte-

sian coordinates of non-linear position measurements col-

lected across the sonobuoy field. The proposed algorithm

does not require a priori knowledge of the number of clus-

ters. The Cartesian position “measurements" supplied by

the mixture estimator are used in a sequential Monte Carlo

(SMC) implementation of the multiple hypothesis tracker

(MHT). Only the association hypotheses are sampled using

a procedure with polynomial expense in the number of

targets. Because the clustering step removes most of the

clutter measurements the SMC-MHT performs well with

a small sample size so that good performance can be

achieved with moderate expense.

The use of a pre-processing step is similar to the ap-

proaches of [3], [6]. However, in [3], the clustering step

is performed on a grid, preventing separation of closely-

spaced targets and tracking is performed using the CPHDF,

the shortcomings of which are discussed above. In [4] clus-

tering and tracking are performed using two PFs operating

on the single target state space. This is computationally

expensive and suboptimal because it involves estimating

states of multiple targets in a single target state space.
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The measurement model is developed in Section II. The

clustering algorithm is described in Section III and used as

part of a sequential Monte Carlo approximation of the MHT

described in Section IV. Simulations reported in Section V

show considerable improvement over the iterated-corrector

Gaussian mixture CPHDF at much reduced computational

expense.

II. MEASUREMENT MODELLING

A multistatic sonar system with s sources and d receivers

dispersed across a search area is considered. Let ξi ∈R
2, i =

1, . . . , s denote the position of the i th source and ξi+s ∈R
2,

i = 1, . . . ,d denote the position of the i th receiver.

Individual sonobuoys comprise an underwater section

consisting of transducers (emitters) and hydrophones (re-

ceivers), connected to a float containing RF communica-

tions and other equipment, including possibly GPS equip-

ment.

Consider a target with state x = (p ′, ṗ ′)′ where p = (x, y)′

is target position and ṗ = (ẋ, ẏ)′ is target velocity. The

measurement at the j th receiver resulting from a ping from

the i th source comprises the bistatic range from source

to target to receiver and the angle from the target to the

receiver, for all transmitted waveforms. The measurement

vector z satisfies

z |x ∼N(h j (x),R j ) (1)

where the measurement function h j (·) is

h j (x) =

[

|p −ξi |+ |p −ξs+ j |

∠(p −ξs+ j )

]

, (2)

where ∠(u) is the angle between u and the x-axis of

the reference coordinate system. Note that only Doppler

insensitive waveforms are considered here.

The target detection process is modelled using signal ex-

cess component data stored in look up tables depending on

waveforms, source, receiver and target depths and source-

receiver separation distance. The SNR calculation employs

precomputed data sets of the Signal Excess components,

namely (a) Target Echoes (TE0) for a standard target with

an isotropic 0 dB Target Strength, and (b) Reverberation

Levels (RL). Computation of the TE0 and RL data was

carried out offline using the Gaussian ray bundle eigenray

propagation model [11], [12]. Let SE denote the mean

signal excess returned from the look-up table for a given

configuration of source, receiver and target. The TE0 and RL

data were calculated for a set of waveforms, different sonar

depth settings and a range of source-receiver separation

distances. The instantaneous signal excess is assumed to

satisfy SE ∼ N(·;SE,σ2). The mean Signal Excess SE was

calculated using the following form of the sonar equation:

SE = TE0+TS−10log10(10RL/10
+10NL/10)−DT, (3)

where TS is the bistatic Target Strength obtained from the

associated TS table for a given bistatic geometry, NL is noise

level after beamforming, DT is a detection threshold given

by the equation, DT = 10log10

(

erfcinv2(2Pfa)
Bτ

)

, in which B is

bandwidth, τ is pulse length, Pfa is the probability of false

alarms. The dB form of the SNR is obtained from SE as

follows: SNRdB = SE+DT.

For a given pulse, the resulting SNR value defines the

mean of the unit-variance normal distribution of the emu-

lated receiver detection statistic. We sample from this dis-

tribution and if the sample value exceeds a Pfa-dependent

threshold, we declare a detection. False alarms are pro-

duced on a grid determined by the beamwidth and range

resolution of the receiver. The mean signal excess also

allowed calculation of the probability of detection for a

target in any location. The measurement generation process

is described in more detail in [5].

III. CLUSTERING OF POLAR POSITION MEASUREMENTS

We employ a clustering pre-processor, posed as a

Bayesian mixture estimation problem, to produce a set

of target-originated position measurements in Cartesian

coordinates. The algorithm requires only an upper bound

on the number of clusters. We begin by describing the

mixture estimation procedure and then demonstrate its

performance in a simulation scenario.

A. Bayesian mixture estimation

Let z1, . . . , zm denote the polar position measurements

from all sensors with corresponding measurement noise

covariance matrices R1, . . . ,Rm . Suppose at most q̄ clusters

and let ω j ∈ {0, . . . , q̄} denote the cluster assigned to the j th

measurement with ω j = 0 indicating that the j th measure-

ment is not assigned to any cluster. The clusters are char-

acterised by the weights w0, . . . , wq̄ and locations µ1, . . . ,µq̄

in Cartesian coordinates. The spread of points in a cluster

is determined by the known measurement noise covariance

matrices. Only the locations, collected into θ = [µ′
1, . . . ,µ′

q̄
]′,

are assumed unknown. Adopting a Bayesian approach, we

aim to compute the posterior density,

p(θ|z1:m) ∝
q̄
∑

i1,...,im=0

m
∏

j=1

p(z j |θ,ω j = i j )π0(θ) (4)

where π0(·) is a prior for the location parameters. Equa-

tion (4) shows that the computation of the posterior density

requires the evaluation of (q̄+1)m hypotheses regarding the

placement of measurements into clusters. This is clearly

infeasible for any reasonable values of q̄ and m. As in [9],

[13] we adopt an approximate method based on sequential

processing of the measurements. In addition to enabling

computationally efficient approximation of the posterior,

sequential processing avoids the lack of identifiability which

leads to the label switching problem [14].

Details of the sequential mixture estimation algorithm

can be found in [9]. The main difference between the clus-

tering problem considered here and that of [9] is that here

the polar position measurements are a nonlinear function

of the cluster means, which are in Cartesian coordinates.

As a result the weights and conditional parameter densities
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encountered during the sequential processing procedure

cannot be found in closed-form. We find an accurate

approximations using a progressive Monte Carlo scheme, as

described in [15]. This involves decomposing the likelihood

into a product of terms and processing each term in

sequence. After all terms have been processed, the required

integrals can be approximated and moment-matched Gaus-

sian approximations to the conditional parameter densities

obtained.

On completion of the processing of all measurements,

the clusters in the most probable hypothesis sequence are

used to form Cartesian position measurements which are

passed to the tracking algorithm. Of the clusters found in

this hypothesis only those with at least d
¯

measurements

assigned to them are used in the tracking algorithm.

The required measurement noise covariance matrix, de-

tection probability and clutter density of the “effective sen-

sor" are found via simulation, as described in the following

section.

B. Simulation results

The performance of the sequential mixture estimation

algorithm is demonstrated on the scenario of Figure 2.

The scenario contains 64 collocated sources and receivers

arranged on a regular 8×8 grid with 5 km spacing between

adjacent grid points. The signal is transmitted from a single

source located at (15,15) km. The target depth is 80m. Only

clusters assigned at least d
¯
= 3 polar measurements are

returned as “effective measurements”.

The detection probability at each target location is found

over 50 realisations for a Doppler insensitive waveform. The

pruning step in the algorithm limits the number of label

sequences to 100. The detection probability and the base-

10 logarithm of the determinant of the sample covariance

matrix of the target position estimate are plotted against

target position in Figure 1. In the latter plot the black pixels

correspond to target positions with detection probabilities

less than 0.1. The mixture estimation algorithm provides

detection probabilities close to one and accurate effective

measurements for many target positions, even those which

are distant from the pinging source. Importantly, these

results are achieved with an effective clutter density of only

2.7×10−4 clutter measurements per scan per m2.

The detection probabilities and covariance matrices

shown in Figure 1 are used to calculate the detection

probability for the tracking algorithm described in Section

IV. Linear interpolation is used to interpolate between the

grid points.

IV. MULTIPLE HYPOTHESIS TRACKING ALGORITHM

Tracking using the Cartesian position “measurements"

provided by the mixture estimation algorithm is performed

using a sequential Monte Carlo (SMC) approximation to the

multiple hypothesis tracker (MHT), similar to that described

in [9]. The tracking model and algorithm are described in

this section.

(a) Detection probability (b) Covariance matrix

Fig. 1. Performance of the mixture estimation algorithm: (a) detection
probability and (b) determinant of covariance matrix plotted against target
position relative to the transmitter position.

A. Modelling

Measurements returned by the pre-processing mixture

estimation algorithm can be associated with existing targets

or new targets. Existing targets persist from one scan to the

next with probability ̺ and evolve according to

x t |x t−1 ∼N(·;F x t−1,Q) (5)

where

F =

[

1 T

0 1

]

⊗ I 2 (6)

Q = q

[

T 3/2 T 2/2

T 2/2 T

]

⊗ I 2. (7)

In each scan there are g possible new targets. The ath new

target is born with probability κa and has prior density

N(·; x̂0,a ,P 0,a).

The Cartesian position measurements obtained by the

mixture estimation algorithm are collected into the vector

Y t = [y ′
t ,1, . . . , y ′

t ,mt
]′, where mt is the number of mea-

surements. Let rt−1 denote the number of existing targets

at time t − 1. The vector ϑt = [ϑt ,1, . . . ,ϑt ,rt−1+g ]′ where

ϑt ,i ∈ {0, . . . ,mt +1}, associates existing and new targets with

the available measurements. For i = 1, . . . ,rt−1, ϑt ,i = j ≤ mt

means that the i th target survives and is associated with

the j th measurement, ϑt ,i = 0 means that the i th target

survives but is not detected and ϑt ,i = mt +1 means the i th

target no longer exists. The association ϑt ,a+rt−1 for the ath

potential new target, a = 1, . . . , g , is similarly defined.

When pinged by the cth source a target with state

x produces a measurement with probability η(c, x). The

target-originated measurement is assumed to be distributed

as N(·; H x ,R(c, x)) where H selects the position elements

of the state and R(c, x) is measurement noise covariance

matrix. False, or clutter, measurements are assumed to

follow a Poisson process with uniform density λ. The

measurement covariance matrix, detection probability and

clutter density are found via Monte Carlo simulation, as in

Section III-B.

B. Sequential Monte Carlo approximation

In principle, the MHT calls for enumeration and eval-

uation of all possible association hypotheses. It is well
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known that exact implementation of the MHT is imprac-

tical because of the exponential number of possible target

existence hypotheses and assignment of measurements to

targets. We address this problem by using an asymptotically

exact SMC approximation. The approach differs slightly

from that proposed in [9] because of the manner in which

target birth and death are handled in the process model.

Here, a new target can be born even if it isn’t detected. This

is necessary because the sensor field isn’t able to view the

whole surveillance area by pinging a single source.

Let ϑ1:t−1 denote a sequence of association hypothesis

vectors. In the SMC-MHT the posterior at time t−1 is repre-

sented by the samples ϑ1
1:t−1, . . . ,ϑn

1:t−1 with corresponding

weights w1
t−1, . . . , wn

t−1, where n is the sample size. The

posterior probability of the sequence ϑ1:t−1 is approximated

as

P(ϑ1:t−1|Y 1:t−1) ≈
∑

{a:ϑa
1:t−1=ϑ1:t−1}

w a
t−1 (8)

The posterior densities of the targets existing under ϑa
1:t−1

are approximated by Gaussians. The posterior mean and

covariance matrix of the i th target under ϑa
1:t−1 are x̂ a

i ,t−1|t−1
and P a

i ,t−1|t−1
, respectively.

Given the measurements Y t it is desired to draw sam-

ples of ϑ1:t . This is done by appending samples of the

current hypothesis vector ϑt to the previously sampled

sequences of hypothesis vectors. We first select the samples

ϑ1
1:t−1, . . . ,ϑn

1:t−1 which will be used to make up the t-length

hypothesis vector samples. The indices a(1), . . . , a(n) of the

samples to be used are selected such that P(a(k) = b) =

wb
t−1. This is equivalent to the resampling step [16] which

is used to mitigate sample degeneracy.

For k = 1, . . . ,n, ϑk
t ∈ {0, . . . ,mt +1}zk

t where zk
t = r a(k)

t−1 + g

with r a
t−1 the number of targets existing under ϑa

1:t−1. The

meaning of the values taken by the elements of ϑk
t has

been discussed above. Only values of ϑk
t in which each

measurement is assigned to at most one target are valid.

Let V k ⊂ {0, . . . ,mt +1}zk
t denote the set of valid hypothesis

vectors. Then, the probability of ϑk
t ∈V k is

P(ϑk
t ) ∝

zk
t

∏

i=1

ψi ,ϑk
t ,i

(9)

where

ψk
i , j =











uiξ
a(k)
0,i

, j = 0,

ui ξ
a(k)
j ,i

/

λ, j = 1, . . . ,mt ,

1−ui , j = mt +1

(10)

The quantity ξa
0,i

is the weight attached to non-detection

of the i th target of the ath particle and depends on the

detection probability and the prior target state density. This

tends to increase as the detection probability decreases.

For j = 1, . . . ,mt the quantity ξa
j ,i

is the association strength

between the j th measurement and the i th target of the ath

sample. This depends on the measurement, the conditional

measurement density, the detection probability and the

prior target state density.

It is not feasible to draw samples of the hypothesis

vector directly from (9) because the number of elements

in V k increases exponentially with the numbers of targets

and measurements. Instead we draw from an importance

distribution Q(·) which factorises so that elements of the

hypothesis vector can be drawn sequentially. Let ϑk
t ,1:i

denote the first i elements of the hypothesis vector ϑk
t and

define the set

Ai (ϑk
t ,1:i−1) = {0, . . . ,mt+1}\

{

ϑk
t ,b , b = 1, . . . , i−1 : ϑk

t ,b ∈ {1, . . . ,mt }
}

(11)

The set Ai (ϑk
t ,1:i−1) contains the hypotheses available for

the i th element of the hypothesis vector. The importance

distribution is

Q(ϑk
t ) =

zk
t

∏

i=1

ψi ,ϑk
t ,i

∑

b∈Ai (ϑk
t ,1:i−1

)

ψi ,b

(12)

The weight assigned to the sample ϑk
t drawn from the

importance distribution (12) is

wk
t ∝

P(ϑk
t )

Q(ϑk
t )

=

zk
t

∏

i=1

∑

b∈Ai (ϑk
t ,1:i−1

)

ψi ,b (13)

The t-length hypothesis vector sequence for the kth

sample is constructed as ϑk
1:t = [ϑa(k)

1:t−1,ϑk
t ]. We require

the posterior densities of the targets existing under each

sampled hypothesis vector. The posterior density of the i th

surviving target under ϑk
t ,i

= j is given by

p(x i ,t |ϑ
k
1:t ,Y 1:t ) ∝



















[1−η(ct , x)]

×N(x i ,t ; x̂ a(k)
i ,t |t−1

,P a(k)
i ,t |t−1

), j = 0,

η(ct , x)N(y t , j ; H x ,R(ct , x))

×N(x i ,t ; x̂ a(k)
i ,t |t−1

,P a(k)
i ,t |t−1

), j = 1, . . . ,mt .
(14)

where ct is the index of the pinging source for the t th scan.

Similar expressions hold for the birth targets.

Note that the association strengths appearing in (10) and

the densities (14) can’t be found in closed-form because of

state-dependent detection probabilities and measurement

covariance matrices. The first approximation is to evaluate

the measurement covariance matrix at the prior mean of

the state. This allows the conditional measurement density

and the prior state density to be combined. The detection

probability is then evaluated at the corrected value of the

state. Thus, we have

η(x)N(y , H x ,R(x))N(x ; x̂0,P 0) ≈ η(x)N(y , H x ,R(x̂0))N(x ; x̂0,P 0)

= η(x)N(y ; ŷ ,S)N(x ; x̂ ,P )

(15)

≈ η(x̂)N(y ; ŷ ,S)N(x ; x̂ ,P )

(16)

Eq. (15) follows from the Gaussian product formula [17].

We obtain Gaussian approximations by evaluating the mea-

surement covariance matrix at the prior mean of the state.

Then, the detection probabilities are evaluated.
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V. SIMULATION RESULTS

In this section, the proposed SMC-MHT is compared with

the GM-CPHD iterated-corrector approximation proposed

in [5] for the scenario shown in Figure 2. This small scenario

contains 64 collocated sources and receivers arranged on a

regular 8× 8 grid with 5 km spacing. Three targets move

in the sonobuoy field. One begins outside the sonobuoy

field and moves into it. The target trajectories are shown in

Figure 2. The targets are observed for a period of 60 min at

intervals of T = 30 s.

Fig. 2. Simulation scenario for tracking with sources (blue circles),
receivers (green crosses) and target trajectories.

At each scan it is necessary to select a source to ping. At

the t th scan we select the source with the highest expected

number of detections of target (t mod 3)+1. Because target

2 is far from targets 1 and 3 it is unlikely that detections

of target 2 will be received when pinging for targets 1

and 3 and vice versa. This clairvoyant scheme is clearly

not feasible in practice, since it requires knowledge of the

target position, but is used here because the focus of this

paper is on tracking performance rather than scheduling.

An approach to source scheduling in the absence of target

position information was proposed in [5], and we will return

to the topic in later publications. Both tracking algorithms

require the selection of a number of parameters. These are

summarised in Table I.

TABLE I
ALGORITHM PARAMETERS

Parameter
Algorithm

SMC-MHT GM-CPHD

Mixture estimation
Pruning length 100 –
Integration sample size 250 –

Tracking
Hypothesis sample size 20 50
Integration sample size – 1000
Birth densities 100 225

The performance of the algorithm is measured by the

mean optimal subpattern assignment OSPA [18] averaged

over 50 realisations. The OSPA distance between two sets

X = {x1, . . . , xm} and Y = {y 1, . . . , y n}, n ≥ m, is defined as

d(X ,Y ) =

(

1/n min
π∈Πn

m
∑

i=1

min
{

‖x i − yπ(i )‖,c
}p

+cp (n −m)

)1/p

(17)

where Πn is the set of permutations of the integers 1, . . . ,n

and c and p are pre-defined constants. This metric is widely

used as a measure of performance in RFS (See, for instance,

[19] §2.4). In this analysis we use p = 2 and c = 100.

Note that the OSPA metric penalises errors in estimation

of both the number of targets and their states.The results

are shown in Figure 3. The SMC-MHT is seen to perform

much better than the GM-CPHD iterated-corrector. The

difference appears to be mainly in the ability of the SMC-

MHT to reliably maintain track. This improved performance

is achieved with about 1/3 the computational expense

of the GM-CPHD iterator-corrector, as measured by the

run time of Matlab implementations. The extremely poor

performance of the GM-CPHDF iterated-corrector can be

attributed, in this instance, to the low detection probability

and, in particular, the fact that it cannot be expected to

detect all targets by pinging a single source. For instance,

in this scenario, target 2 can only be reliably observed every

three scans.

Fig. 3. Mean OSPA plotted against time for the SMC-MHT with clustering
(blue) and the GM-CPHD iterator corrector (green).

VI. CONCLUSIONS

In this paper, we have proposed a sequential Monte Carlo

approximation of the multiple hypothesis tracker for multi-

target detection and tracking with application in multistatic

sonar fields using a Gaussian mixture approximation and

compared it numerically to the cardinalised probability

hypothesis density filter of Mahler. A key feature is the

use of clustering on the measurements obtained from the

sonobuoy field prior to tracking in place of a previously

implemented iterator-corrector method thus overcoming

the dependence on order of processing of measurements.

By accentuating target-originated measurements and re-

moving clutter measurements this approach greatly reduces

the difficulties associated with the tracking problem. The
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proposed approach offered both improved performance

and reduced computational expense compared to the car-

dinalised probability hypothesis density filter.

Currently being explored are several possible direc-

tions for future work including the incorporation of

sonobuoy drift, manoeuvring targets, and sophisticated

source scheduling that allows for multiple simultaneous

transmitters and realistic battery life constraints.
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