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Abstract—The problem of selecting a template that matches
a given candidate signal is applicable across a wide variety
of domains. Using the correlation coefficient as the avenue for
selecting the winning template is perhaps the most common
technique. The challenge lies in selecting the winning template
when there is no clear separation between the correlation
coefficient values of the winning template and the others. In this
paper, we present a simple Dempster-Shafer (DS) theoretic model
that enables one to capture the uncertainty regarding the winner
selection in correlation coefficient based template matching. The
DS theoretic framework provides an avenue to develop the model
with few resources and little to no prior knowledge. We validate
the model using several numerical examples and a numerical
character recognition application where the evidence provided
by several sets of templates are combined using a DS theoretic
fusion strategy to arrive at a better decision.

I. INTRODUCTION

The correlation coefficient is widely used as a measure that

captures the strength of the linear relationship between two

variables. When applied to random variables, the correlation

coefficient between the random variables X and Y usually

takes the form [1]

rX,Y =
cov(X,Y)

σXσY

=
E[(X−X)(Y −Y)

σXσY

, (1)

where E[�] denotes the expectation, X = E[X] and Y =
E[Y] denote the means, and σX = E[X2] − E2[X] and

σY = E[X2] − E2[X] denote the standard deviations. The

correlation coefficient takes values in [−1,+1]: values closer

to +1 indicate a strong positive relationship; values closer to

−1 indicate a strong negative relationship; and values closer

to 0 indicate weak a or non-existent relationship.

The correlation coefficient is also widely employed to gauge

the ‘closeness’ or similarity between two data vectors, in

which case it usually takes the form [2]

rx,y =

∑n

i=1(xi − x)(yi − y)
√

∑n

i=1(xi − x)2
∑n

j=1(yj − y)2
, (2)

where x = 1
n

∑n

i=1 xi and y = 1
n

∑n

j=1 yj denote the

‘sample’ means of the real-valued time series data vectors

x = [x1, . . . , xN ]T and y = [y1, . . . , yN ]T , respectively.

Prior Work. In practice, one is often interested in deter-

mining how well a template signal vector belonging to a set

of templates matches a given candidate signal. The template

which yields the highest correlation coefficient with the can-

didate can be considered the ‘winner’ thus implying that the

candidate indicates the presence of the winning template [3]–

[7]. Over the years, this simple and popular method based on

correlation coefficients has also been employed when there is

a set of candidate signals to be considered [8]–[11].

Challenges. However, this technique of selecting the win-

ning template may not be satisfactory when multiple tem-

plates yield high correlation coefficients with no significant

separation of values between the correlation coefficient of one

template and the others.

For instance, two templates which yield correlation coeffi-

cient values that are close to each other creates an uncertainty

regarding which template should be declared the winner.

Approaches that attempt to deal with such situations tend to

employ various weighting and voting strategies to select the

winning candidate [8], [11], [12]. Another source of difficulty

in selecting the winner is the presence of noise. For example,

within the context of reconstructing physiological signals, the

work in [12] employs additional leads to mitigate problems

caused by sources corrupted from noise. Fuzzy reasoning has

been suggested as a way to improve the detection process in

such situations [9].

These methods however do not provide a satisfactory solu-

tion for capturing the uncertainty associated with assigning a

template to the candidate signal. To account for noisy signals,

multiple templates, and multiple candidates, researchers have

also embraced the use of more elaborate Kalman filtering and

other statistical approaches [13].

Contributions. How should we handle such uncertainties

in selecting the winning template? While probability theory

is perhaps the most widely used approach for representing

and handling imperfect information, probabilistic methods

usually call for a priori assumptions regarding the underlying

distributions and priors for handling data uncertainties. On

the other hand, alternate imprecise probability formalisms,

such as the Demspter-Shafer (DS) belief theoretic approach,

provide ways to represent and deal with data uncertainties
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while requiring only little more information than voting and set

intersection techniques [14]–[17]. DS theoretic (DST) methods

can represent a wider variety of data imperfections in a more

intuitive manner [15], [16]; they are more robust to model-

ing errors [18], [19], and when compared to what alternate

frameworks provide, the DST belief and plausibility measures

enable a decision to be made with a better understanding of

the associated uncertainties [20]. When there is no uncertainty

regarding the underlying distribution, these DST measures

equal probability thus allowing seamless integration of DST

methods with probabilistic methods [14]–[16], [20], [21]. This

is a unique feature of the DST framework.

In this paper, we present a simple DST model which can

be used to capture the uncertainty associated with assigning

a template to the candidate signal. This model, which is

only slightly more complicated than a probabilistic model,

is based on the correlation coefficients between the candidate

and the templates, and it allows us to view the candidate as an

evidence source which indicates the ‘presence’ or ‘absence’ of

each template. One may then utilize a DST evidence fusion

strategy to combine multiple evidence sources, where each

source provides evidence towards the ‘presence’ or ‘absence’

of each template, to make a decision regarding the winning

template. Moreover, the availability of DST measures of belief

and plausibility provide valuable information regarding the

confidence one can place on this decision.

II. BASIC NOTIONS OF DS THEORY

The frame of discernment (FoD) Θ refers to the set of

mutually exclusive and exhaustive propositions of interest.

We take the FoD to be Θ = {θ1, . . . , θn}, i.e., Θ is finite

and composed of n singleton propositions. The power set

of Θ is denoted by 2Θ. A basic probability assignment

(BPA), otherwise referred to as a mass function, is a function

m : 2Θ → [0, 1] such that

m(∅) = 0;
∑

A⊆Θ

m(A) = 1. (3)

Contextual considerations (e.g., accuracy, source reliability,

source conflicts, etc.) all play a role in determining the mass to

be allocated to a given proposition [22]. A proposition which

has been allocated a non-zero mass is referred to as a focal

element. The core F refers to the set of focal elements and the

body of evidence (BoE) E refers to the triplet {Θ,F,m(�)}.

By allowing the allocation of masses directly to non-

singleton or composite propositions, DS theory provides an

avenue to capture ignorance and uncertainty. While m(A)
measures the support that is directly assigned to proposition

A ⊆ Θ only, the belief Bl(A) represents the total support that

can move into A without any ambiguity; plausibility Pl(A)
represents the extent to which one finds A plausible. So,

Bl(A) =
∑

B⊆A

m(B); Pl(A) =
∑

B∩A6=∅

m(B). (4)

These DST belief and plausibility measures are closely related

to the inner and outer measures of a non-measurable event A ⊆

Θ with respect to probability mass functions (p.m.f.s) defined

on Θ. Furthermore, when focal elements are constituted of

singletons only, the mass, belief and plausibility all reduce to

a p.m.f. The uncertainty interval Un(A) = [Bl(A), P l(A)]
provides information regarding the support for A ⊆ Θ.

Dempster’s combination rule (DCR) allows one to combine

or fuse evidence represented as DST models [14]:

m(A) =

∑

B∩C=A

m1(B)m2(C)

∑

B∩C=∅

m1(B)m2(C)
, (5)

where E1 = {Θ,F1,m1(�)} and E2 = {Θ,F2,m2(�)} are the

BoE being fused to generate the fused BoE E = {Θ,F,m(�)}.

The fused mass and BoE generated by the DCR are usually

denoted by m = m1 ⊕ m2 and E = E1 ⊕ E2, respectively.

The DCR is commutative and associative, thus allowing one

to fuse multiple sources of evidence with ease.

III. PROPOSED DST MODEL

Consider the correlation vector corresponding to a single

candidate vector and a set of N templates {T1, . . . , TN}:

v =
[
v1 v2 · · · vN

]T
, (6)

where vi ≥ 0, i = 1, . . . , N , denotes the positive correlation

coefficient between the candidate vector and the template Ti.

In what appears below, we will deal with only non-negative

values of correlation coefficients. In most applications, all the

information regarding the identity of the template is captured

by the absolute value of the correlation coefficient. In some

application contexts, a negative correlation coefficient usually

implies the absence of the corresponding template and treating

such coefficients as having a value of zero would force the

corresponding DST mass to be zero as well. On the other

hand, if negative correlation coefficients provide additional

information regarding the identity of the template, one can

easily modify the algorithm we present below to account for

negative coefficients values.

In constructing a DST model to represent the correlation

coefficient vector v in (6), we must ensure that the model

captures the potential conflicts among templates that are

‘competing’ for a match with the candidate signal reasonably

well. For example, a correlation vector with multiple entries

having a value of +1 would indicate that multiple templates

are perfect matches for the candidate.

Weighting Matrix. First, consider the following (N ×N)-
sized matrix ∆V = {∆Vij}:

∆V = {∆Vij}, where ∆Vij = vi − vj . (7)

Note that ∆Vij ∈ [−1,+1], ∀i, j = 1, . . . , N , can be con-

sidered the ‘distance’ between the correlation coefficients for

templates Ti and Tj ; the sum of the entries in the j-th column

of ∆V is the ‘sum of distances’
∑N

i=1 ∆Vij =
∑N

i=1(vi−vj)
from the correlation coefficient of template Tj .

However, the entries in the ∆V matrix still lack information

about the ‘strength’ of the correlations. For example, take
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v = [0.4, 0.3, 0.7, 0.6]T . This yields (v1−v2) = (v3−v4) =
0.1, irrespective of the fact that the values v3 and v4 are

significantly higher (thus more correlated with the correspond-

ing two templates) than the values v1 and v2 (which are

less correlated). To account for this, we utilize the following

weighting strategy:

∆W = {∆Wij} = ∆v ·DV, (8)

where Dv = diag{v1, . . . , vN} denotes the diagonal matrix

with the diagonal entries {v1, . . . , vN}. Column j of ∆W is

simply column j of ∆V weighted by the correlation coeffi-

cient vj corresponding to template Tj . Taking the same exam-

ple v = [0.4, 0.3, 0.7, 0.6]T , we get v1∆V12 = (0.4)(0.4 −
0.3) = 0.04 and v3∆V34 = (0.7)(0.7 − 0.6) = 0.07, which

now accounts for the strength of the correlation coefficients.

Fig. 1. Plot of ∆Wij = vi ∆Vij versus (vi, vj), for vi, vj ∈ [0, 1].

Note that each column of ∆W evaluates the correlation

coefficient corresponding to a specific template against the

correlation coefficients of the entire set of templates. For

example, column j of ∆W captures the strength of the

correlation coefficient vj and the distance between vj and

all other correlation coefficients (vi − vj). In essence, the

matrix ∆W = {∆Wij} accounts for both the strength of the

correlation to each template and also the distance between

the correlations of pairs of templates. When one or both

aspects are low, the corresponding entries in ∆W will take

on lower values. This feature of ∆W is important when

attempting to fit our DST model. Fig. 1 demonstrates the

mapping ∆Wij = vi ∆Vij versus (vi, vj). Note that the

maximum and minimum achievable values of ∆Wij are +1
and −1/4, respectively; and these values are achieved when

(vi, vj) = (1, 0) and (vi, vj) = (1/2, 1), respectively. Note

how ∆Wij rewards higher strength of correlation coefficients

and larger distances of pairs of templates.

Column Weights Vector. The sum of column j of ∆W

informs us about how well the template Tj matches the can-

didate and how different the correlation coefficient associated

with Tj is when compared to the other correlation coefficients.

We refer to the vector created by the sum of the entries in each

column of the weighting matrix ∆W as its column weight

vector c:

c =
[
c1 · · · cN

]
= 11×N∆W, (9)

where 11×N = [1, 1, . . . , 1], i.e., the (1 × N)-sized row

vector with all entries taking the value 1. Note that the diagonal

entries of ∆W are always 0. Hence, ci ∈ [−(N −1)/4, (N −
1)], ∀ i ∈ 1, N . These column weights allow us to identify

the rival templates that are competing to be a match for the

candidate. Let us take some examples to demonstrate this.

Mass Measure Vector. Non-positive entries of c indicate

templates that cannot compete for being a match to the

candidate vector. So, such entries are replaced with values of

0 to get the mass measure vector h:

h = [h1, h2 · · · , hN ], where hi =
ci + |ci|

2
. (10)

Clearly, hi ∈ [0, (N − 1)], ∀i ∈ 1, N . Note that, h is

identical to c, except that it substitutes 0 for all the non-

positive elements of c. We will later use the entries of h to

generate the DST masses associated with the templates Tj .

For convenience, we use the notation

Sv =

N∑

i=1

vi; Sh =

N∑

i=1

hi. (11)

As it turns out, Sh denotes the total of DST masses that will

be assigned to the singletons {Ti}.

TABLE I
SOME EXAMPLES

v c h

(1) [1, 0, 0, 0]T [3, 0, 0, 0] [3, 0, 0, 0]

(2) [1, 1, 0, 0]T [2, 2, 0, 0] [2, 2, 0, 0]

(3) [1, 1, 0.9, 0]T [1.10, 1.10, 0.63, 0] [1.10, 1.10, 0.63, 0]

(4) [1, 1, 0.9, 0.1]T [1, 1, 0.54, −0.26] [1, 1, 0.54, 0]

Examples. Table I show some examples of how h can be

used to capture those templates that can be a match for the

candidate. Note the following:

Example (1): Template T1 is the only match, and h puts the

maximum weight on T1.

Example (2): Templates T1 and T2 are both competing for

being a match, and h puts equal weights to T1 and T2. This

weight is however less than what T1 gets in Example (1)

because of the presence of potentially two matching templates.

Example (3): Templates T1-T3 are competing for being a

match, with template T3 being the slightly weaker, and h

distributes its weights among T1-T3.

Example (4): All templates have positive correlation coeffi-

cients, but only T1-T3 are legitimate potential matches. Note

how h discards T4, but puts less values for T1-T3 because

c4 < 0.

‘Extreme’ Case. Examples 1-2 above are instances of an

‘extreme’ situation when the correlation coefficients of all the

templates take on values 1 or 0 only, i.e., vi ∈ {0, 1}, ∀i ∈
1, N . We refer to this case as the extreme case. For this case,
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without loss of generality, we may assume that the templates

yielding a perfect match appear as the top elements of v, i.e.,

v = [

P of 1 s
︷ ︸︸ ︷

1, . . . , 1,

(N − P ) of 0 s
︷ ︸︸ ︷

0, . . . , 0 ]T . (12)

This yields

∆W =

[
∅P×P ∅P×(N−P )

1(N−P )×P ∅(N−P )×(N−P )

]

c = h = [

P of (N − P ) s
︷ ︸︸ ︷

(N − P ), . . . , (N − P ), 0, . . . , 0]. (13)

Here ∅K×L and 1K×L denotes the (K × L)-sized matrices

with entries 0 and 1, respectively. Note that, Sh = P (N−P ).
Focal Elements. The FoD of the proposed DST model is

the set of N templates, i.e., Θ = {T1, . . . , TN}. We use the

column weights vector c to identify the focal elements of our

DST model. First, we make the following observations:

(a) When vi → 1 and vj → 0, ∀j 6= i, the column

weights ci → (N − 1) and cj → 0, ∀j 6= i, i.e., the

uncertainty regarding the template Ti being a match decreases

(see Example 1 above). Conversely, the higher the difference

between (N − 1) and a column weight, the less likely the

corresponding template is the correct match. When the column

weight is zero or negative, we become more certain that the

corresponding template is not a match.

(b) When a template is unable to compete against the other

templates, the corresponding column weight becomes zero

or negative (see Example 4 above). So, in our model, we

neglect the templates corresponding to non-positive values

of ci, thus preventing them from becoming focal elements

in our DST model. This strategy restricts the domain of

candidate templates that are potential focal elements thus

avoiding having to assign DST masses to ‘weak’ candidates.

The number of non-zero entries of h (or equivalently, the

number of positive entries of c) determine the number P of

singleton focal elements of our DST model:

P =

N∑

i=1

ti, where ti =

{

1, if hi > 0;

0, if hi = 0.
(14)

DST Mass Allocation. We will develop the model first for

the extreme case, and then extend it to the more general case.

The focal elements of the proposed DST model are

F = {T1, T2, . . . , TP , Θ}. (15)

We will assume that P ∈ 1, N ; P = 0 case implies complete

lack of information, and we trivially assign the DST model

m(Θ) = 1.

Extreme Case.

a) Masses Allocated to Singletons m(Ti): From the

examples in Table I, we notice how the values hi appear

to weigh templates according to how well they match the

candidate. With this observation in mind, we propose

m(Ti) ∝ hi =⇒ m(Ti) =
hi

K
=

N − P

K
, (16)

where K > 0 is the proportionality constant.

b) Mass Allocated to Complete Ignorance m(Θ): Since

the masses allocated to all the focal elements must add to 1,

we must have

m(Θ) = 1−
P∑

i=1

m(Ti) = 1−
Sh

K
= 1−

P (N − P )

K
. (17)

On the other hand, in the extreme case, consider (12) and

(13) where P templates are yielding perfect matches. Clearly,

when P = 1, template T1 provides a perfect match while the

others offer 0 correlation. We should then allocate no mass for

Θ, i.e., m(Θ) = 0. On the other hand, when P = N , all the

templates exhibit equally ‘perfect’ matches, and no decision

can be made in favor of any template. We should then allocate

m(Θ) = 1. Using a linear relationship, for the extreme case,

we then use

m(Θ) =
P − 1

N − 1
. (18)

Compare (17) and (18) to get

K = (N − 1)P. (19)

Thus we arrive at the following DST model:

m(A) =







N − P

P (N − 1)
, for A = Ti, i ∈ 1, P ;

P − 1

N − 1
, for A = Θ;

0, otherwise.

(20)

General Case.

c) Masses Allocated to Singletons m(Ti): As we did for

the extreme case, we again propose

m(Ti) ∝ hi =⇒ m(Ti) =
hi

K
, (21)

where K > 0 is the proportionality constant.

d) Mass Allocated to Complete Ignorance m(Θ): Again,

as before, we must have

m(Θ) = 1−
P∑

i=1

m(Ti) = 1−
Sh

K
. (22)

In the extreme case, we know that Sh = P (N − P ).
This corresponds to the case when P templates have perfect

matches, viz., vi = 1 and ci = hi = N − P , for i ∈ 1, P
(see (12) and (13)). In the general case however, when one or

more of the P templates have correlation coefficients that are

less than 1, as we show in Appendix A, Sh < P (N − P ). In

other words, for a given value of P , the extreme case (where

vi = 1, i ∈ 1, P ) yields the maximum value for Sh. So,

m(Θ) = 1−
Sh

K
> 1−

P (N − P )

K
. (23)

The amount of the increase in m(Θ) from the extreme case

should be [P (N − P )− Sh]/K. Thus we would get

m(Θ) =
P − 1

N − 1
+

P (N − P )− Sh

K
. (24)
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Since the masses should add to 1, considering (21) and (24),

we get

Sh

K
+

P − 1

N − 1
+

P (N − P )− Sh

K
= 1. (25)

This yields

K = P (N − 1). (26)

Thus, we arrive at the following DST model:

m(A) =







hi

P (N − 1)
, for A = Ti, i ∈ 1, P ;

1−
Sh

P (N − 1)
, for A = Θ;

0, otherwise.

(27)

Noting that hi = N − P, t ∈ 1, P , for the extreme case, we

note that the DST model in (27) is valid for the extreme case

as well. Finally, we note that, for i ∈ 1, P ,

Bl(Ti) =
hi

P (N − 1)
; Pl(Ti) = 1−

∑

j 6=i hj

P (N − 1)
. (28)

IV. MODEL VALIDATION

In this section, we provide some examples to demonstrate

the validity of the proposed DST model. All examples use

N = 4, and we will use m to denote the vector of mass

assignments, i.e.,

m = [m(T1), m(T2), m(T3), m(T4), m(Θ)]T . (29)

Some General Observations.

Example 1: v = [y, y, y, y]T . This example demonstrates

the case when all the correlation coefficients are identical. In

this case, we get

∆W =







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0






,

and

c = h = [0, 0, 0, 0].

Thus, P = 0, i.e., we have no singleton focal elements. The

corresponding DST model is

m = [0, 0, 0, 0, 1]T .

Note that, Un(Ti) = [0, 1], i ∈ 1, 4, which shows the complete

lack of evidence to make any decision.

Example 2: v = [y, y, y, z]T with z > y. Here, all the

correlation coefficients are identical, except one which has a

higher coefficient. In this case, we get

∆W =







0 0 0 z(z − y)
0 0 0 z(z − y)
0 0 0 z(z − y)

y(y − z) y(y − z) y(y − z) 0






,

and

c = [y(y − z), y(y − z), y(y − z), 3z(z − y)];

h = [0, 0, 0, 3z(z − y)].

Thus, P = 1. The corresponding DST model is

m = [0, 0, 0, 3z(z − y)/3, 1− 3z(z − y)/3]T .

Note that the mass assignments for T4 and Θ are dependent on

the distance (z−y). As (z−y) increases, the m(Θ) decreases

and m(T4) increases. The maximum distance achievable is

when z = 1 and y = 0, yielding m(T4) = 1. However, as

(z − y) decreases, the m(Θ) increases and m(T4) decreases.

The minimum achievable distance occurs when z = y. As

we approach this minimum distance, we converge to the

scenario of maximum conflict where m(Θ) = 1. Also note

that Un(T4) = [3z(z − y)/3, 1].
Example 3: v = [y, y, z, z]T with z > y. Here, half the

correlation coefficients are identical; the other half also has

identical coefficients but with a higher value. In this case, we

get

∆W =







0 0 z(z − y) z(z − y)
0 0 z(z − y) z(z − y)

y(y − z) y(y − z) 0 0
y(y − z) y(y − z) 0 0






,

and

c = [2y(y − z), 2y(y − z), 2z(z − y), 2z(z − y)];

h = [0, 0, 2z(z − y), 2z(z − y)].

Thus, P = 2. The corresponding DST model is

m = [0, 0, 2z(z − y)/6, 2z(z − y)/6, 1− 4z(z − y)/6]T .

Compare this DST model, Example 3, with that of Example 2

above. While the masses are still dependent on the distance

(z − y), the values of the masses for T3 and T4 have been

reduced. This lowering of the value can be attributed to

having additional competing templates. Furthermore, notice

how m(Θ) has been increased; it will never be reduced to

0, even if a maximum distance between z and y is reached.

The range of values for m(Θ) is [0.33, 1] because of the

amount of focal elements present in the vector. Also note that

Un(T3) = Un(T4) = [2z(z − y)/6, 1− 2z(z − y)/6].
Numerical Examples.

Example 1: v = [0.01, 0.03, 0.12, 0.98]T . Here, the tem-

plate T4 is the only strong match. Note that we have

∆W =







0 −0.125 −0.232 −0.204
0.147 0 −0.172 −0.159
0.568 0.357 0 −0.030
0.666 0.440 0.040 0






,

and

c = [−0.0110, −0.0306, −0.0792, 2.7244];

h = [0, 0, 0, 2.7244].
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Thus, P = 1. The corresponding DST model is

m = [0, 0, 0, 0.9081, 0.0919]T .

Also note that Un(T4) = [0.9081, 1].
Example 2: v = [0.98, 0.83, 0.40, 0.30]T . Here, the tem-

plates T1 and T2 act as strong matches. Note that we have

∆W =







0 −0.125 −0.232 −0.204
0.147 0 −0.172 −0.159
0.568 0.357 0 −0.030
0.666 0.440 0.040 0






,

and

c = [1.3818, 0.6723, −0.3640, −0.3930];

h = [1.3818, 0.6723, 0, 0].

Thus, P = 2. The corresponding DST model is

m = [0.2303, 0.1120, 0, 0, 0.6577]T .

Also note that

Un(T1) = [0.2303, 0.8880]; Un(T2) = [0.1120, 0.7697].

Example 3: v = [0.31, 0.32, 0.43, 0.44]T . Here, all the

templates are weak. Note that

∆W =







0 0.0032 0.0516 0.0572
−0.0031 0.0473 0.0528
−0.0372 −0.0352 0 0.0044
−0.0403 −0.0384 −0.0043 0






,

and

c = [−0.0806, −0.0704, 0.0946, 0.1144];

h = [0, 0, 0.0946, 0.1144].

Thus, P = 2. The corresponding DST model is

m = [0, 0, 0.0158, 0.0191, 0.9652]T .

This illustrates that, with our proposed model, even with a

weak set, masses are still assigned to the stronger templates,

but with an increased value for m(Θ). Also note that

Un(T1) = Un(T2) = [0, 0.8652];

Un(T3) = [0.0158, 0.9810]; Un(T4) = [0.0191, 0.9843].

Example 4: v = [0.31, 0.32, 0.73, 0.74]T . We use this

example to compare with Example 3 to demonstrate how

uncertainty decreases if T3 and T4 become stronger candidates.

We have

∆W =







0 0.0032 0.3066 0.3182
−0.0031 0 0.2993 0.3108
−0.1302 −0.1312 0 0.0074
−0.1333 −0.1344 −0.0073 0






,

and

c = [−0.2666, −0.2624, 0.5986, 0.6364];

h = [0, 0, 0.5986, 0.6364].

Thus, P = 2. The corresponding DST model is

m = [0, 0, 0.0998, 0.1061, 0.7942]T .

Notice how T3 and T4 are being supported more, while the

support for m(Θ) is being reduced. Also note that

Un(T1) = Un(T2) = [0, 0.7942];

Un(T3) = [0.0998, 0.8940]; Un(T4) = [0.1061, 0.9003].

V. EXPERIMENT

In this section, we demonstrate the applicability and robust-

ness of the proposed model within the context of numerical

character recognition within images.

Data Set. We used the data set in [23] for detecting

numerical characters from computer fonts with 4 variations

(combinations of italic, bold, and normal) and in 85 font types.

Each font type provides a set of 10 images thus creating a total

of 850 template images within the data base.

Fig. 2. Template T5 in 15 different font types.

Formulation of Correlation Coefficients as Evidence. For

our experiment, we used only 15 font types. With the templates

{T0, . . . , T9} denoting the numerical characters {0, . . . , 9},

respectively, we therefore used a set of 150 templates. Fig. 2

shows the 15 font types corresponding to the template T5

(which corresponds to the numerical character “5”). The data

base was then partitioned into two groups. The first partition

was designated as the training set (i.e., evidence sources) and

the other as the testing set. It is important to emphasize that

the purpose of this experiment is to simply evaluate the DST

model. We have undertaken no preprocessing of the images.

With each font giving a set of 10 templates, when correlated

with an unknown image, we obtain the vector v in (6). We

treat this vector corresponding to each font as one source of

evidence. With the 15 font types, we therefore obtain 15 evi-

dence sources and their corresponding 15 DST models. These

sources are then fused using the DCR in (5). For the testing

data set, unknown candidate images are randomly selected

from the remaining 700 templates and then we introduce ‘salt

and pepper’ noise to corrupt the image prior to generating

the correlation coefficients. Several different noise density, d,

levels of ‘salt and pepper’ noise were employed. Figs 3, 4,

and 5 show three levels of d. The noise level applied to a

candidate image was quantified via the peak signal-to-noise

ratio (PSNR) [24].

Results and Discussion. No noise was added initially to

determine the baseline accuracy which was 93.17% for the

detection of 600 randomly selected samples using all 15

evidence sources. It typically required a minimum of 3 fusion
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Fig. 3. d = 0.55 Fig. 4. d = 0.75 Fig. 5. d = 0.90

combinations to converge to the correct match, thus making it

obvious that simply taking the highest correlation coefficient

would be an inadequate approach. The confusion matrix in

Table II demonstrates the difficultly in distinguishing a specific

template from one another (in particular, for T4 and T1).

TABLE II
CONFUSION MATRIX: d = 0, ACCURACY = 93.17%

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

T0 55 0 0 0 0 0 0 0 2 0

T1 0 49 0 0 15 0 0 0 0 0

T2 0 0 71 0 0 0 0 0 0 0

T3 0 0 0 54 0 0 0 0 0 0

T4 0 5 0 0 53 0 0 0 0 0

T5 0 0 0 0 0 58 0 0 0 0

T6 0 0 0 0 2 9 40 0 4 0

T7 0 1 0 0 0 0 0 69 0 0

T8 0 0 0 0 0 0 0 0 52 0

T9 3 0 0 0 0 0 0 0 0 58

When high distortion is introduced into the samples (d =
0.9, PSNR = 35.02), the overall accuracy is 76.7%. The

corresponding confusion matrix appears in Table III, where

an increase in false positives and false negatives across all

templates is observed.

TABLE III
CONFUSION MATRIX: d = 0.9, ACCURACY = 76.7%

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

T0 42 0 0 0 2 0 2 3 3 0

T1 0 43 1 0 7 0 0 0 0 1

T2 1 0 55 4 0 0 0 11 0 0

T3 0 1 0 45 0 8 0 0 11 1

T4 0 5 0 0 67 2 0 1 0 1

T5 5 1 0 1 0 52 5 0 1 0

T6 8 0 0 1 4 12 33 0 6 2

T7 0 3 2 0 1 0 0 46 0 0

T8 3 0 0 1 0 1 3 0 42 2

T9 11 5 0 0 2 0 1 4 0 34

Table II demonstrates that detection errors were mostly

attributable to a sample that may not fit well with our 150

evidence sources. This suggests that we could possibly pick

different sources of evidence that could better represent the

database for improved detection. On the other hand, Table III

demonstrates that a failure in detection is attributable to noise

distortion.

The importance of our proposed DST model is demonstrated

by how it captures the uncertainty as noise is introduced into

the sample. As Table IV shows, when noise increases, we are

unable to reduce the uncertainty even when multiple sources

of evidence are fused. We are still able to detect the winner (by

simply picking the template with the highest mass), but now,

the DST model provides us invaluable information regarding

our confidence (or lack thereof) in the match. This is an

important and useful feature of our model.

TABLE IV
NOISE LEVELS VS UNCERTAINTY

ND .05 .25 .45 0.65 0.85 0.95

PSNR 47.46 40.52 37.91 36.37 34.70 35.16

Θ 0.57 0.74 0.86 0.94 0.98 0.99

VI. CONCLUSION

We have proposed a simple DST model for capturing

the uncertainty associated with allocating a template for a

given candidate signal. This model can be especially useful

in situations where there is no clear winning template in

terms of the correlation coefficient values. Such a situation

creates uncertainty as to the template to be declared the

winner. The DST framework allows the model to be developed

with little prior knowledge, and the DST uncertainty interval

(constructed from the belief and plausibility values) provide

valuable information regarding the confidence one can place

on this decision. Moreover, DST evidence fusion strategies can

be utilized to fuse evidence generated from different sources

thus allowing the decision to be refined and improved. This is

exactly the strategy that we followed in the experiment carried

out in Section V.

We emphasize that the results in Section V are extracted

simply by using the correlation coefficient as applied di-

rectly to the templates and the candidate. In practice, when

one employs correlation coefficients for template matching,

template and candidate signals are pre-filtered (e.g., light

compensation, rotation, etc., for images). The results we give

do not employ any pre-filtering, and the decisions can be

significantly improved by employing such schemes.

The model proposed in this work is simple in the sense

that it captures uncertainty via the assignment of a mass to

the complete ambiguity (i.e., Θ). A better model would be to

allow other non-singleton propositions to be focal elements.

For example, if the correlation coefficients corresponding to

the templates T1 and T2 are high and the coefficients for the

others are low, a better model would generate a focal element

from (T1, T2). The model in this paper employs Θ as the only

non-singleton focal element.

APPENDIX A

MAXIMUM OF Sh =
∑N

i=1 hi

Consider the correlation coefficient vector v in (6), where

vi ∈ [0, 1], ∀i ∈ 1, N . Generate the following matrix associ-

ated with V:

∆W =








v1∆v11 v2∆v21 . . . vN∆vN1

v1∆v12 v2∆v22 . . . vN∆vN2

...
...

. . .
...

v1∆v1N v2∆v2N . . . vN∆vNN







, (30)
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where ∆vij = (vi − vj). Next, generate a column weights

vector, c, by summing the elements of each column of ∆W:

c =
[
N v21 − v1Sv, N v22 − v2Sv, . . .

N v2j − vjSv, . . . , N v2N − vNSv

]
. (31)

Without loss of generality, let us assume that only the first

P elements of c are positive which implies that

N v2i − viSv

{

> 0, for i ∈ 1, P ;

≤ 0, for i ∈ P + 1, N,

⇐⇒ vi

{

> Sv/N, for i ∈ 1, P ;

≤ Sv/N, for i ∈ P + 1, N.
(32)

The mass measure vector thus generated is

h =
[
N v21 − v1Sv, N v22 − v2Sv, . . .

. . . , N v2P − vPSv, 0, . . . , 0
]
. (33)

Then,

Sh =

P∑

j=1

(
N v2j − vjSv

)
= N

P∑

j=1

v2j − Sv





P∑

j=1

vj



 . (34)

We now consider the following problem: how much can

we increase Sh by changing vj , j ∈ 1, P , while making sure

that only the first P elements of c are positive? We note the

following:

• For vi, i ∈ 1, P , use (32) to get ∂Sh/∂vi = 2Nvi−Sv−∑P

j=1 vj > 0.

• For vi, i ∈ P + 1, N , ∂Sh/∂vi = −
∑P

j=1 vj < 0.

So, it is clear that the maximum of Sh is achieved when

vi, i ∈ 1, P are increased to their maximum value (viz., 1)

and when vi, i ∈ P + 1, N , are decreased to their minimum

value (viz., 0). In doing so, we do not violate the conditions

in (32) and therefore we ensure that only the first P ele-

ments of c are positive. So, putting vi = 1, i ∈ 1, P , and

vi = 0, ı ∈ P + 1, N , in (34), we get

maxSh = NP − P 2 = P (N − P ). (35)
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