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Abstract—Major challenges anticipated by future mission
planners comprise automated processing, interpretation, and
development of intelligent decisions using large volumes of
dynamically evolving structured and unstructured data, while
simultaneously decreasing the time necessary to plan and re-
plan. Motivated by the need to seamlessly integrate automated
information processing and resource management for proactive
decision-making and execution in a highly adaptive network-
centric environment, we propose a) surveillance and interdiction
algorithms for dynamic resource management; b) distributed
and collaborative mixed-initiative multi-level resource allocation
algorithms to allocate hierarchically-organized assets to process
inter-dependent tasks and goals; and c) quantifying the value
of information in order to accomplish mission objectives. The
decision support concepts and algorithms discussed in this paper
seek to maximize the efficiency of information transactions
in mission planning/re-planning processes by achieving shared
situational awareness and increased mission effectiveness. We
specifically focus on the dynamic decision making processes
associated with planning in a broad range of maritime operations.

Index Terms—Resource management, surveillance, interdic-
tion, value of information, multi-level resource allocation

I. INTRODUCTION

Future mission planning environments are expected to be

complex and distributed due to rapid advances in cyber-

physical systems and the ubiquitous use of intelligent hetero-

geneous assets (e.g., unmanned aerial and undersea systems)

to operate from ships/sea bases. These assets (resources), in

contrast to manned systems, offer a unique set of capabilities,

including ultra-long endurance and high-risk mission accep-

tance. Additionally, these heterogeneous resources provide the

ability to automatically collect massive amounts of structured,

unstructured, and semi-structured data, which form the in-

formation base for decision making. Currently, the existing

decision support tools are inundated with too much data and

not with enough information; this increases cognitive demands

on the decision makers (DMs) by diverting their attention

to irrelevant data and by driving them to perform competing

and conflicting mission tasks without ascertaining the current

mission context. Channelized attention of DMs sometimes

leads to operational mishaps – as an example, operators flying

a Predator were so focused on completing the assigned search

and rescue task that they failed to notice that an unmanned

aircraft was headed toward a mountain; the aircraft was

destroyed on impact and damage was estimated to be $3.9M.

Moreover, eight of the soldiers who were to be provided

air support by the Predator were killed. If information alerts

on situational awareness and tasking had been appropriately

allocated to the right operators on the team, those lives may

have been saved [19]. Therefore, it becomes imperative to

systematically analyze, process and interpret the collected data

for presenting relevant information to DMs in a timely manner

and making effective decisions even under dynamic, uncertain,

and challenging mission conditions (e.g., changes in mission

goals, environment, assets and tasks).

In addition to information processing, it is also crucial to

dynamically allocate scarce and expensive resources to collect

decision-relevant information that has the potential to increase

the probability of mission success. For example, in counter-

smuggling missions, which involve surveillance (to search,

detect, track and identify potential drug trafficking vessels) and

interdiction operations (to intercept, board, investigate and po-

tentially apprehend suspects), the joint problem of dynamically

allocating surveillance and interdiction assets to optimally

trade-off exploration versus exploitation in thwarting potential

smuggling activities under different operational contexts is

very challenging [12]. Given the probability of activity of the

smugglers, a function of the intelligence and meteorological

and oceanographic (METOC) information, that predicts where

the smugglers may transit, the key operational decisions to be

made are the following. Where should the surveillance assets

and the surface interdiction vessels be allocated to maximize

the probabilities of detection and interdiction, respectively?;

When and how should the assets transit to the search location?;

How to dynamically route and coordinate surveillance and

interdiction assets under uncertain weather conditions?; How

to best allocate resources when there is missing or only
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Fig. 1. Battlespace on Demand (BonD) Framework [2]

historical information (also referred to as “flow”) regarding

the targets is available; How often should re-planning be

done and how should this information be conveyed to the

DMs unobtrusively? Similar problems arise in counter-piracy,

anti-submarine warfare (ASW), search and rescue (SAR), and

unmanned aerial vehicle (UAV) missions.

A. Technical Challenges

We posit that these operational challenges can be abstracted

into the following key technical challenges, which will be

faced by future DMs in planning their missions: 1) The

synergy created by a blended force of manned and unmanned

assets will be of paramount importance to the joint forces

with the concomitant problem of finding solutions for efficient

routing, scheduling, dynamic coordination and multi-level mis-

sion planning in a contested mission space; 2) With increasing

sensing capabilities, identifying, extracting and fusing arrays

of information embedded in huge volumes of data and assuring

mission success in the face of cyber threats and uncertainty

will be computationally expensive and challenging. 3) The

uncertain and dynamically changing patterns of potential

threats and conflicts in today’s world require a strong military

capability that is sufficiently proactive to execute a full range

of operations – from normal peacetime operations to major

combat operations, humanitarian assistance/disaster relief and

asymmetric threats such as piracy and terrorism. The term

proactive extends beyond adaptability; its virtues range from

responsiveness, congruence with mission, robustness, innova-

tiveness, flexibility, and anticipation to resiliency.

Currently, a conceptual framework for mission planning

is the Battlespace on Demand (BonD) [2]. This overarch-

ing decision support framework allows the commanders to

access, assess, and use environmental information to make

better decisions, to improve their awareness of their present

environmental context, and to improve information sharing

among commanders, thereby improving the situational aware-

ness of the battlespace [2]. Additionally, the framework pro-

vides a systematic approach to convert knowledge of the

forecasted oceanographic environment to be incorporated into

war-fighting and shaping decisions. The BonD framework, as

shown in Figure 1 includes four layers: Data, Environment,

Performance, and Decision. The Data Layer (Tier 0) incorpo-

rates massive amounts of structured and semi-structured data

from various heterogeneous sensors (e.g., satellites, buoys,

etc.). The Environment Layer (Tier I) allows the commanders

to assess the present and future states of the oceanographic

environment. In the Performance Layer (Tier II), the impact of

the current and forecasted environment on individual sensors

and weapon platforms, in the form of Performance surfaces,

is evaluated. In the Decision Layer (Tier III), the commanders

translate the knowledge of the current and forecasted physical

environment, along with its uncertainty and its impact on

assets (i.e., sensors and weapons), into mission risk and

meaningful courses of action. Currently, the Tier III Decision

layer primarily requires a manual capability with experienced,

highly-trained personnel for superior mission performance.

Here, enabling commanders to make informed decisions across

a range of maritime operations and skill levels of personnel is

a key element to enhance mission effectiveness and planning.

Thus, motivated by the need to seamlessly integrate auto-

mated information processing, and dynamic resource man-

agement in a highly adaptive network-centric environment,

we seek to introduce dynamic decision support concepts

and algorithms to maximize the efficiency of information

transactions in multi-mission planning/re-planning processes

to achieve shared situational awareness and improved mission

effectiveness. The proactive mission planning algorithms dis-

cussed in this paper dynamically invoke plans as a function

of emerging events, while readily adapting to meet unfolding

events by monitoring the outcomes of many of its previous

decisions, and re-plan, if warranted.

The remainder of the paper is organized as follows. Section

II discusses a dynamic asset allocation problem motivated by

operational concerns, such as counter-smuggling and counter-

piracy operations. In Section III, a distributed and collabo-

rative resource management for Maritime Operations Center

planning is discussed. In Section IV, we discuss methods to

quantify the value of information for decision making. Finally,

the paper concludes with a summary of key findings and future

research directions in section V.

II. DYNAMIC RESOURCE MANAGEMENT

The problem of dynamic resource management under uncer-

tainty, arising in surveillance and interdiction operations, may

be viewed as a moving horizon stochastic control problem, as

shown in Figure 2. In the context of a counter-piracy/counter-

smuggling mission, the problem is to efficiently allocate a set

of heterogeneous sensing and interdiction assets to maximize

the probability of pirate/smuggler detection and interdiction,

subject to mission constraints by integrating information, such

as INTEL, weather, asset availability, asset capabilities (e.g.,

range, speed), sensor management, and asset assignment (e.g.,

many sensors may need to be coordinated to obtain a better

picture of the situation). These problems are NP-hard and

can be mapped closely to the decision support layer of the

aforementioned BonD framework in the previous section.
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Fig. 2. Dynamic Resource Management Problem as a Stochastic Control
Problem [3]

Probabilistic information on smuggling/piracy activity is

generated in the form of color coded heat maps based on

INTEL and METOC (e.g., wind speed and direction, wave

heights, and ocean currents) information as shown in Figure

3. This information is interpreted in the form of probability

of activity (PoA)/pirate attack risk surfaces (PARS) surfaces.

The PoA/PARS [3][11] surfaces are represented in the form of

longitude-latitude-specific probability mass functions, indicat-

ing the behavior/activity of each smuggler in conjunction with

a set of descriptors for each smuggler presented in the form

of active/pending cases. The PoA/PARS surfaces are akin to

the “information state” in the stochastic control setting and

thus forms the “sufficient statistics” for the asset allocation

and scheduling process. The operational planning problems for

counter-smuggling and counter-piracy operations are similar in

that they are both characterized by multiple (distinct) targets

and assets; the inter-temporal constraints combined with inter-

temporal correlations in information, and coupled search and

interdiction with different time-scales. In the next section,

we discuss the problem formulation of counter-piracy mission

which can be easily extended to counter-smuggling operation,

as well.

A. Interdiction Operation

We consider a moving horizon planning problem, where

each time period k(k = 1, 2, ...,K) is of length ∆, (e. g., 1- 24

hours), denoting the time interval between the PARS updates

and the status information on available assets. DMs plan at the

current time period (k = 0) as to where the assets are to be

positioned for the next K periods, k = 1, 2, ...,K using the

PARS surface and asset status as the basis for asset allocation

at the beginning of every planning period. A forecast of the

PARS surfaces containing the evolution of pirate probabilities

(target dynamics) is given to the DM at the beginning of each

planning period based on the latest information [3]. In the

parlance of stochastic control, PARS constitutes the “sufficient

statistics”(“information state”) for decision making [15]-[17].

Here, we assume that the target dynamics do not change

between two consecutive PARS updates i.e. ∆.Thus, as ∆
approaches zero the PARS surfaces provide a real time update

of the targets.

The set of interdiction assets that are assigned during

period k > 0 is denoted as Ik, k = 1, 2, ...,K. The area of

responsibility, G, is partitioned into cells denoted by g ∈ G.

Fig. 3. Information Flow in a Decision Making Process [12] [18]

PARS, updated at the end of every time period, provides the

probability of pirate attack in cell g during time period k,

denoted by PA(g, k). The cell location of asset i during time

period k is denoted as xi(k). Decisions that are made at k = 0
correspond to the future positioning of the available assets.

Thus, at time k = 0, the decision variables are:

U = {xi (k) ∀k = 1, 2, ..,K, ∀i ∈ Ik} (1)

Given xi(k), each asset can traverse a set of reachable cells

Ri(xi(k)) ⊂ G in time period k + 1 depending on METOC

effects at time k and the asset speed. Thus, Ri(xi(k)) can

be a function of k, but does not show its explicit dependence

on k for simplicity of notation. In order to select the optimal

policy U∗ over the planning horizon [1,K], we maximize the

objective function given by (2) at k = 0. The optimization

algorithm follows a regenerative optimization scheme, i.e., it

belongs to the class of open-loop feedback optimal policies

[15]. However, of the decisions that are made today (k = 0),
only the commands xi(k) are to be implemented at k = 1.

Thus, it is possible to use the previous optimization results

as initial conditions for the next periods optimization. Note

that our formulation allows a cell to be covered by multiple

interdiction assets. The interdiction objective is formulated as:

max
U

K
∑

k=1

γ(k−1)
∑

g∈G

PA(g, k)

•

[

1−
∏

i∈Ik

(1− PIi(xi(k), g)PD(g, k))

]

s.t. xi(k + 1) ∈ Ri[xi(k)]; xi(0) is given;i ∈ Ik;
k = 0, ...,K − 1

(2)

where γ(0 ≤ γ ≤ 1) is the discount factor. The interdiction

probability PI(xi(k), g) is calculated based on the centered

1-D scheme proposed in [4], which takes into consideration

the vessel speed, the helicopter speed (if any), and the delay

time to launch the helicopter. Following [4], the probability
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(a) (b)

Fig. 4. (a) PARS Maps and Routes of Interdiction Vessels; (b) Surveillance Search Boxes [3]

of interdicting a piracy event in cell g within a specified

interdiction time τ (typically 30 minutes) is given by:

PIi (xi (k) , g) =

{

2r(i,τ)
dist(xi(k),g)

,r (i, τ) < dist(xi(k),g)
2

1, r (i, τ) ≥ dist(xi(k),g)
2

(3)

where dist(xi(k), g) is the Euclidean distance from cell g,

where a piracy event takes place, to asset i’s location xi(k),
and r(i, τ) is the distance that will be covered in time τ by

asset i. It is defined as:

r (i, τ) =

{

viτ, τ ≤ thi
vit

h
i + vhi

(

τ − thi
)

, τ > thi
(4)

where vi is the speed of asset i, vhi is the speed of the

helicopter operated by asset i, and thi is the time to launch

the helicopter (typically 10 minutes). The detection probability

PD of asset i (with surface radar range ρ(i)), at time k is:

PD (g, k) =

{

1, dist (xi (k) , g) ≤ ρ(i)
0, otherwise

(5)

Realistic constraints such as the weather, asset availability,

asset capabilities (e.g., range, speed), and asset assignment

(e.g., many sensors may need to be coordinated to obtain a

better picture of the situation) are considered [3].

B. Surveillance Operations

In general, assets used for large ocean surveillance generally

perform one surface search mission per day. The assets are

assigned to predefined search regions in a “box,” where the

actual search time allowed for the asset is determined by

excluding the transit time from the time interval, ∆. In this

section, we formulate the surveillance problem, where the

area not covered by interdiction assets is partitioned into

search regions having rectangular shapes. A set Sk of available

surveillance assets at time k is assigned to the partitioned re-

gions to maximize the discounted cumulative sum of detection

probability over the planning horizon, k = 1, 2, ..,K. A search

region assigned to a surveillance asset s at time k is given by

the set of cells As(k), which is a rectangular subset of cells in

G. It is defined by two coordinates comprising a longitude and

latitude. Each class of surveillance assets, s ∈ Sk, has different

capabilities, measured in terms of the sweep width ws(k) and

the speed vs(k). Note that the effective sweep width ws(k) of

asset s is a function of METOC conditions in the region at a

particular time k. Let the probability map of pirate presence

be such that PP (g, k) denotes the probability that at least one

pirate is in cell g at time k. Let the amount of time spent by

asset s, s ∈ Sk, in the assigned search region As during time

step k be given by τs(k). Following [5][6], the probability of

detection of asset s assigned to a set of cells As(k) is given

by:

PDs (As (k) , k)

=
∑

g∈As(k)

PP (g, k)×
(

1− exp
(

−ws(k)∗vs(k)∗τs(k)
ac|As(k)|

))

(6)

where ac is the area of a cell and |As(k)| is the number of cells

in the search region, As(k) ⊂ G. The surveillance problem can

be succinctly written as follows:

max
{As(k),s∈Sk}

K
∑

k=1

γ(k−1)
∑

s∈Sk

PDs(As(k), k)

s.t.Ai (k) ∩Aj (k) = ∅, (i 6= j) ∈ Sk

Ai (k) has rectangular shape,∀i ∈ Sk

(7)

Our technical approach to solving this NP-hard optimization

problem involves decomposing it into two sequential phases

by exploiting the fact that interdiction assets are substantially

slower than surveillance assets. In Phase I, we solve the prob-

lem of allocating only the interdiction assets, such that regions

with high cumulative probability of attack over the planning

horizon are maximally covered as shown in Figure 4a. Sub-

sequently, in Phase II, we solve the surveillance problem,

where the area not covered by interdiction assets is partitioned

into non-overlapping search regions (e.g., rectangular boxes)

and assigned to a set of surveillance assets to maximize the

cumulative detection probability over the planning horizon.

In order to overcome the curse of dimensionality associated

with Dynamic Programming, we developed a Gauss-Seidel
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Fig. 5. Maritime Operations Center Experiments [9]

algorithm, coupled with a rollout strategy, for the interdiction

problem [15][16]. For the surveillance problem, we devel-

oped a partitioning algorithm followed by an asymmetric

assignment algorithm for allocating assets to the partitioned

regions. Once the surveillance assets are assigned to the search

regions, the search path for each asset is determined based

on a specific search strategy within the search region, as

shown in Figure 4b [3]. In the case of counter-smuggling

missions, the surveillance asset allocation is made before

interdiction, because the surveillance assets have the flexibility

to be allocated/re-allocated more frequently as compared to

interdiction assets. However, exhaustive search at a particular

search box may sacrifice the opportunity to detect other critical

smugglers in the vicinity of the search area. Consequently,

interdiction of time-critical targets requires frequent updates

to case information so that appropriate decisions can be made

to (re)allocate the assets. The above interdiction algorithm was

recently enhanced to dynamically place the interdiction assets

in the areas that are being patrolled by surveillance assets

and to prioritize the interdiction areas using the projected

probability of detection of the surveillance assets.

III. DISTRIBUTED AND COLLABORATIVE DYNAMIC

RESOURCE ALLOCATION

Dynamic resource management process becomes more com-

plex especially for Maritime Operations Centers (MOCs)

where emphasis is on standardized processes and methods,

centralized assessment and guidance, networked distributed

planning, and decentralized execution for assessing, planning

and executing missions across a range of operations [8]-

[10]. The planning process, which is informed by guidance

from higher headquarters along with a concomitant assessment

process, should be collaborative both vertically (with higher

headquarters or with lower-level subordinate task forces that

“own” the individual assets) and horizontally (with other

MOCs or joint components). It is essential that the planning

process should be aligned with a specific organizational struc-

ture (an asset, e.g., a UAV, reports to a specific Task Force) and

should consider the fact that assets are organized hierarchically

(e.g., a platform or asset contains sub-platforms/sub-assets,

which have capabilities). As MOC planning is in a distributed

and collaborative setup, it is crucial to determine the key

planning elements such as who has the expertise to make

the plan (DMs who may be humans or autonomous agents),

what needs to be planned (tasks, jobs, actions to be executed

using assets or resources), why make the plan (desired goal

or objective function), how to achieve the expected outcome

(the assignment of assets to tasks, sequencing of activities

arranged as a task graph), where the plan is executed (task

location or mission area), when the plan is executed (start

time and duration for each task) and with what facilities

to make the plan (information about tasks, assets, desired

objectives, decision support systems, etc.). The interactions

of the above parameters include where DMs make decisions

regarding the allocation (how, when and where) based on the

information available on the assets they own and the tasks they

are responsible for.

A typical operational level planning process in an abstracted

MOC is shown in Figure 5. It includes the following intelligent

entities: Future Planners (FP) collaboratively convert the

higher-level mission goals or commander’s intent into a Course

of Action (COA) for the mission. This COA decomposes the
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Fig. 6. VOI Analysis: Information Surfaces (Uniform, Flow and BonD)

mission goals into a graph of sub-goals or specific tasks to

achieve the goals, and also includes estimated requirements

and available resources to accomplish every task, and, ulti-

mately, the commander’s intent. Each sub-goal in the COA is

represented as a task graph with branches and sequel options.

Prior intelligence, historical and forecasted weather patterns

and logistics play key roles in the development of future plans.

Future Operations (FOPS) allocate assets to tasks based on the

FP-specified COA. This allocation is made over a moving time

horizon (typically a 3-day horizon, day T, T+1, T+2, where T

is the current day), taking into account dynamically evolving

intelligence, logistics and weather information provided by

weather reach back cells. Current Operations (COPS) monitor

the ongoing activities on day T and provide feedback to

FOPS and FP in the form of situation reports (SITREPS) on

emerging tasks and their requirements, task outcomes, changes

in task requirements, asset (and network) status, and evolving

intelligence. Multilevel planning agents provide information

and decision support to assist FOPS planners in evaluating and

optimizing the asset-to-task allocation at several levels. At the

Task Force ( TF) level, the agents suggest different supporting-

supported options across a number of interdependent tasks in

competing task graphs (representing different missions), taking

into account uncertainty in weather forecasts, intelligence,

asset status and network status. At the platform and war-

fare area levels, the agents optimize the sub-platform-to-task

allocation. Other agents compute mission context-dependent

value of information and decisions and manage the flow of

information among decision makers (DMs) [7]-[9].

The MOC research problems can be broadly categorized as:

1) Modeling, formulating, and solving a domain-independent

planning problem of allocating asset packages to a set of

interdependent tasks, where each task is specified by a vector

of resource requirements, and each asset is specified by a

vector of resource capabilities; 2) Adapting the planning

process to a distributed and collaborative environment, where

multiple DMs having ownership of disjoint assets, have differ-

ent information and expertise collaborate to achieve a mission

objective; 3) Integrating realistic multi-level organized assets

into the planning problem formulation.

In order to address the above issues, we designed, devel-

oped, and deployed a library of dynamic resource allocation

algorithms including: Asset package selection-based schedul-

ing algorithm solves the planning problem by specifying

asset packages on a task-by-task basis. The weighted length

algorithm (WL) is applied to prioritize the tasks in the task

graph based on their processing time and its position in the

task graph. For each task, we obtain m-best asset packages (m

is a user-specified parameter). A rollout strategy is employed

to evaluate the impact of allocating an asset package to a

particular task on the execution accuracies of unassigned tasks

in the task list, thereby improving the WL solution. The

solution is further improved by using a pair-wise exchange

(PWE) heuristic that considers all possible task assignment

sequences obtained by exchanging the task at the current place

in the assignment sequence with some other task, while not

violating the precedence constraints [7].

Blackboard-based collaborative planning framework en-

ables information sharing and resource transfer among DMs

to achieve a certain mission objective. The DMs use the

Asset Package Selection module to allocate assets to their

own tasks; we call this the intra-agent module. The inter-

agent module then interacts with the blackboard by sharing

asset and task information as well as asset prices that quantify

the importance of an asset to each individual DM. Another

important aspect of our architecture is a model of the DMs

cooperative behavior in terms of the relative priority they

give to the other DMs tasks. We conducted computational

experiments to investigate how various cooperative behaviors

affect mission performance (measured in terms of average

task accuracy), communication cost (in terms of shared assets

and tasks) and workload (measured in terms of the number

of tasks they are responsible for and the number of tasks

they are assigned in the final plan). Mission performance

was compared for five cases: “no collaboration” among DMs,

“self-interested” DMs who are only concerned with their

own tasks, “teamwork” where each DM treats every task as

being equally important, “benevolent” where each DM gives

higher priority to other DMs’ tasks than his own, and the

“centralized” case. The results indicate that as the cooperative
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Fig. 7. Value of Information: Performance Analysis

behavior increases, DMs send a greater share of their tasks

and assets to be allocated by the Coordinator, i.e., it becomes a

centralized planning problem requiring greater communication

and coordination. A good trade-off can be found between

teamwork and benevolent cooperative behaviors in order to

maintain a balanced workload, reasonable communication cost

and near-optimal planning performance [8].

Further, we extended the asset package selection-based

planning algorithm to a multi-level asset allocation problem

to minimize the overall difference between a human-specified

task accuracy performance criteria and the expected perfor-

mance based on how well the assigned resources match the

required resources, subject to a number of real-world planning

constraints. Due to hierarchical decomposition of assets and

complex constraints, the problem size grows dramatically as

more tasks are to be planned for. We developed two methods:

(1) a Lagrangian Relaxation-based planning algorithm that

decomposes the problem into two solvable sub-problems, viz.,

a linear programming sub-problem with discrete variables and

a nonlinear programming problem with continuous variables;

(2) a Dynamic List planning algorithm that iteratively assigns

the most preferred asset to the most demanding task until

the tasks’ accuracies are as close to the desired accuracies

as possible. The experimental results in [9] demonstrate that

the Dynamic List Planning method is a highly-efficient near-

optimal solution, while the Lagrangian relaxation method is a

highly accurate, but somewhat slower algorithm. The proposed

algorithms are verified using realistic MOC planning scenar-

ios, by providing a comparative evaluation of the performance

measures of the two proposed methods, and investigating the

value of information via human-in-the-loop experiments [9].

IV. VALUE OF INFORMATION

Examining decision quality from different perspectives (i.e.,

mission goals, impact of the environment, asset status and task

status) will enable mission relevant high value information

(HVI) to be identified, acquired, and delivered to the right DM

at the right time to achieve high quality decisions. Paucity of

information results in poor decisions due to not having enough

situation relevant data; on the other hand, having too much

information will distract and overburden the DM resulting in

poor decision quality. Finding HVI that maximizes decision

quality will enable decision support systems to recommend

effective COAs for mission success. When information is

accurately valued, extracted, and prioritized, it pre-stages

decision relevant information, alleviates the bandwidth limi-

tations in distributed, intermittent and low bandwidth (DIL)

environments, thereby promoting mission success.

Quantification of the value of information (VOI) allows

acquisition and integration of the right data from the right

sources in the right context to the right DM (human) at the

right time for the right purpose (known as the 6R concept

[1]), providing a means to define and value unique information

related to context and decision models. In this section, we

discuss a variety of methods to quantify the value of informa-

tion in a DM-understandable way. The methods include both

tangible and statistical variations that are based upon situation-

driven mission objectives and different types of information

gains or distances, respectively. Given a mission objective and

situation query, a VOI sensitivity analysis can be conducted to

offer insights as to how degradation and quality of information

may impact mission outcomes and situation awareness. Differ-

ent types of information pertaining to mission, environment,

assets, and pending tasks can be analyzed and in doing so, their

value can be quantified based on tangible mission-relevant

metrics. Measures of information value based on Bayesian

diagnosticity, impact, information gain, and other Bayesian

Optimal Experimental Design framework theories [11] are

used widely outside of operations research and elaborated on

in [13]. Statistical entropy-based computations and distances

such as the aforementioned and including pre-posterior analy-

sis, utility, and Kullback-Leibler Divergence serve as metrics

to prioritize information, connecting the calculated number

with a piece of information deemed important or irrelevant to

the current context. While these statistics-based methods do

not have a tangible unit, when computed for multiple pieces

of information, based on comparison, prioritization is feasible

[11].

In addition to the tangible and entropy-based metrics, we

can also evaluate the value of information by conducting sen-

sitivity analysis of mission metrics with respect to availability

and non-availability of information as shown in Figure 6.

Finding the peak of the decision quality curve is integral to

exploring how high quality, effective COAs can be suggested

via proactive decision support tools. A prototype version

of a “wrapper-based” approach to information valuation has

been explored in the context of counter-smuggling, where we

examined the impact of three different degrees of uncertainty

propagated onto PoA surfaces and the concomitant expected

decision quality [11]. As shown in Figure 7, providing PoA

surfaces in the form of historical routes of smugglers pro-

vided 884% improvement in decision quality (as measured by

expected number of targets interdicted) in comparison to a uni-

form PoA surface, while the PoA specific to the cases (termed

Battlespace on Demand (BonD) PoA) provided 50% further

improvement in relation to the historical routes and 1445%
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improvement overall. Thus, case-based high-valued contextual

information in the form of PoAs can substantially improve

mission success. We plan to implement similar context-driven

analyses in other mission contexts (e.g., ASW, ISR, UAV) by

considering the uncertainty in PoAs themselves (“second order

uncertainty or ambiguity” [14]) and evaluating the sensitivity

of HVI with respect to this uncertainty [11].

V. CONCLUSION

In this paper, we briefly discussed dynamic asset allocation

algorithms for surveillance and interdiction operations in the

context of counter-smuggling and counter-piracy missions.

The dynamic surveillance and interdiction asset allocation

problems are NP-hard. In order to overcome the curse of

dimensionality, we proposed the method of successive dis-

placements and rollout concepts for solving the interdiction

problem. For the surveillance problem, we proposed a parti-

tioning algorithm, where each region is grown independently

subject to the regions shape constraints. We also presented

distributed and collaborative resource management algorithms,

which are capable of interacting with human decision makers

in providing asset package selection, blackboard-based col-

laborative planning and multi-level dynamic asset allocation in

dynamic and uncertain environments. Additionally, techniques

and methods to quantify the value of information were briefly

discussed.

The proposed algorithms facilitate efficient utilization of

assets at the operational level by providing intelligent courses

of action to the appropriate commanders in a timely manner.

Additionally, it facilitates the DMs in promptly understanding

and envisioning the current and projected mission context,

while allowing them adequate time to make appropriate de-

cisions by taking into account the concomitant uncertainties,

and unknown risks stemming from the specific context via

networking, collaboration, distributed execution, and resource

sharing within the mission environment. Our future work will

focus on exploring approximate dynamic programming (ADP)

[17] techniques for dynamically coordinating surveillance and

interdiction assets in a dynamic and uncertain environment

and planning for unexpected scenarios, e.g., asset breakdown,

pop-up threats, etc.
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