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Abstract–The synergistic integration of information 

from electronic sensors and human sources is called 

hard/soft information fusion. Emerging literature is 

reviewed according to levels of the Joint Directors of 

Laboratories data fusion process model. Two 

frameworks are created for hard/soft information 

fusion for the condition monitoring of aircraft. First, a 

cognitive framework is adapted from Orasanu’s 

decision process model and Klein’s macrocognition. 

Second, a functional framework is adapted from the 

JDL model, and the data-information-knowledge 

hierarchy is juxtaposed. Levels of inference, machine 

capabilities, and maintainers’ capabilities are also 

juxtaposed to compare and contrast relative strengths 

with respect to JDL levels. In ongoing studies, 

maintainers’ information-seeking behavior is observed 

to make inferences about the cognitive processes 

underlying their decision-making and its implications 

for diagnoses, treatments, and resulting outcomes. 

Improved outcomes and reduced diagnostic effort may 

reduce operational maintenance cost, increase mission 

readiness, and increase flight safety. 
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1 Introduction 

The problem of aircraft maintenance and operation 
involves multiple challenges in understanding and 
processing sensor data, accessing and applying 
information from pilots, maintenance personnel, 
engineers, fleet support teams (FSTs), baseline managers 
(BLMs), and logisticians. Monitoring the mechanical 
condition of aircraft is ultimately a critical requirement for 
the safety of passengers and pilots. While increasing 
opportunities for advanced sensors are available to 
support condition monitoring of aircraft, human 
observations, including assessments of relevant contextual 
information, appear to be important for success.  

Hard/soft information fusion is the synergistic 
integration of information from electronic sensors and 
human sources [1]. Numerous advances have been made 

in the past few years, as follows: i) multi-sensor data 
fusion, including integrating information from physical 
“hard” sensors and from human observations “soft” 
sensors [2], ii) understanding cognitive models for human 
decision-making and situation awareness [3], and iii) 
human-centric design of human-computer systems [4]. 
The current research focused on hard/soft information 
fusion for decision-making in the context of the condition 
monitoring of aircraft. 

1.1 Literature review 

Aircraft maintenance is crucial to flight safety—low-
quality maintenance has been a leading factor in aviation 
accidents, flight delays, and flight diversions [5]. 
Maintainers face unique stress, knowing the work that 
they perform today will affect the safety of the crew for 
years in the future—an emotional burden that is largely 
unrecognized outside the maintenance community [6].  

According to Hobbs, “From a human factors 
perspective, maintenance personnel have more in common 
with doctors than with pilots” [6]. Doctors involved in 
medical treatment may unintentionally cause iatrogenic 
injury, a threat to patient health induced by the act of 
treatment [7]. Likewise, the disassembly of aircraft 
components required for routine inspection and 
maintenance may unintentionally cause aircraft 
mechanical problems [6]. Maintenance-induced problems 
cause almost 15% of commercial aviation accidents [8].  

Maintenance of a single civil aircraft used as an air 
carrier costs an average of $300,000 per year [9]. A single 
flight cancellation costs an airline $140,000, and flight 
delays cost an airline $17,000 per hour on average [10]. In 
the safety-critical domain of aviation, the avoidance of 
iatrogenic (i.e., maintenance-induced) problems is a 
strong rationale for condition-based maintenance, which is 
a maintenance strategy that relies on evidence that 
indicates the state of deterioration. According to this 
strategy, the decision to disassemble an aircraft 
component is based upon evidence rather than a specified 
time interval (e.g., 1 year) or use interval (e.g., 2000 
engine hours). 

The hard/soft information fusion literature on condition 
monitoring is summarized by level of the Joint Directors 
of Laboratories (JDL) data fusion process model [11]. 
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Galar et al. [12][13][14] and Reiger [15] made no mention 
of JDL model; however, for the purpose of comparison, 
all are organized into corresponding levels of the JDL 
model. The distinction between levels of the JDL model 
does not imply that levels are decoupled. On the contrary, 
in real-world information fusion systems, information 
processing is coordinated across many levels [1]. 

The hard/soft literature provides little mention of level-0 
and level-1 processing, because these levels deal primarily 
with source pre-processing (e.g., signal and image 
processing, feature extraction, coordinate transformations) 
for level 0 and state estimation (e.g., Kalman filtering, 
feature-based pattern recognition) for level 1. While there 
are level-0 and level-1 analogs for soft data processing 
(e.g., text extraction, meta-data generation, image-to-text 
transformations, etc.), these are not the primary focus of 
hard/soft information fusion processing. 

Level 2/3, human-influenced diagnostics and 
prognostics, are primarily machine based, but have been 
enhanced to benefit from some human intervention. 
Reiger [15] proposed that people be employed to increase 
the resiliency of automated (i.e., machine-based) 
diagnostics to unexpected conditions. He studied the 
identification of abnormal conditions and implications in a 
control system using automated, distributed reasoning 
amongst multiple software agents.  

Reiger’s case studies involve the monitoring of 
industrial processes: electric power substations, chemical 
facility reactors, and hazardous facility climate control 
[15]. The unexpected conditions introduced were 
sabotage, sensor failure, and equipment failure. The 
manifestations of unexpected conditions in automated 
systems create competing goals that are difficult to resolve 
without human intervention. As shown in Table 1, Reiger 
posited that systems benefit from improved resilience due 
to the human cognitive ability to adapt and reason. 

Reiger acknowledged that human contribution to 
resilience could be either beneficial or detrimental. 
Therefore, he emphasized the importance of training, 
because “[the] system … will be no better than the 
proficiency of the least capable individual” [15].  

Table 1 – Literature on hard/soft information fusion in 
condition monitoring organized into levels of the JDL 

model. Source: Bernardo [11] 

Level(s) Name Findings 

2/3 

Human-influenced 
diagnostics and 
prognostics [15] 

Systems could benefit from 
improved resilience due to the 
human cognitive ability to adapt. 

2/3/5 

Integrated machine- 
and human-based 
diagnostics and 
prognostics 
[12][13][14] 

A more complete assessment of 
condition led to better diagnostics 
and prognostics. Safety and 
reliability were increased, and life-
cycle maintenance costs were 
reduced. 

5 

Human information 
processing [4] 

Hard/soft information fusion 
emerges from the interaction 
between machines and humans. 

In levels 2/3/5, integrated machine- and human-based 
diagnostics and prognostics, functions are shared between 
machine and human. No single level of the JDL model 
encompasses integrated machine- and human-based 
diagnostics and prognostics; instead, such systems are 
comprised of two components of equal importance. The 
machine-based component belongs to levels 2 and 3, and 
the human-based component belongs to level 5. Together, 
the two components comprise a level-2/3/5, integrated 
machine- and human-based diagnostics and prognostics 
fusion system.  

In a series of three papers, Galar et al. promoted a 
hybrid, data-driven, phenomenological approach to fusion 
in order to aid the condition-based maintenance of railway 
assets (e.g., locomotives, track components, interchanges) 
[12][13][14]. In a Machinery Information Management 
Open System Alliance (MIMOSA) framework, 
measurements were collected from electronic sensors. 
Maintainers’ notes contain free-text descriptions of faults 
and actions performed. Each maintainer may describe the 
same phenomenon differently; therefore, semantic 
analysis, which is JDL level-0 and level-1 processing for 
soft data, is essential. Galar et al. reported that awareness 
of the context mined from the maintainers’ notes 
benefitted diagnostics and prognostics analyses, and it 
resulted in a more complete, accurate assessment of the 
condition of railway assets [14]. Safety and reliability of 
railway assets were increased, and life-cycle maintenance 
costs were reduced. 

Nilsson et al. explored the role of human information 
processing in level-5 fusion [4]. They proposed the 
employment of people as active participants in human-
machine distributed cognition. They found that hard/soft 
information fusion emerges from the interaction between 
machines and humans. Human cognitive processes were 
identified as fusion resources.  

Although Nilsson et al. chose a case study in maritime 
surveillance [4], the same concepts could be applied to the 
condition monitoring of aircraft. For example, some 
aircraft have more than one ground system to aid in 
diagnostic analyses of aircraft components (e.g., engines, 
transmissions, and avionics). Using the cognitive 
functions and processes involved in human information 
processing, engineers and maintainers could work in 
cooperation to identify readings, called features, on those 
ground systems to corroborate the tracking of risks present 
on the aircraft, even before they become faults. 

Previous research has left a gap: the lack of the 
application of cognitive and functional frameworks to 
hard/soft information fusion for condition monitoring of 
aircraft. These frameworks are applied to the domain, and 
they are informed by other conceptual frameworks. 
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Cognitive framework 

Crandall et al. [16] introduced the concept of 
macrocognition, and Orasanu [17] developed a decision 
process model. Cacciabue and Hollnagel said, 
“Macrocognition is a collection of cognitive functions and 
processes that describes how people think in the 
performance of their work in its natural settings” [18]. In 
the context of aviation maintenance, macrocognition can 
be viewed as cognitive functions and processes within the 
aircraft maintainer’s mind. 

In field studies, Crandall et al. discussed the differences 
between decision-making  in context, and decision-
making in an artificially-controlled laboratory 
environment  [16]. They found that mental functions, such 
as problem detection, which are relevant to aircraft 
maintenance, occur in the natural context of decision-
making. Decisions in the field were often primed by the 
recognition of the problem situation as something similar 
to what was experienced in the past. Klein called this 
recognition-primed decision-making (RPD) [19].  

The Orasanu decision process model [17] is a 
conceptual framework for decision-making strategies. 
Orasanu drew upon Klein’s RPD model [19] and on 
Wickens and Carswell’s information processing model 
[20]. By adapting the Orasanu decision process model and 
Klein’s macrocognition framework, a cognitive 
framework is applied to hard/soft information fusion in 
condition monitoring. In Figure 1, the cognitive 
framework has been informed by the Orasanu decision 
process model, Wickens and Carswell’s information 
processing model, and Klein’s macrocognition.  

 

Figure 1 –Cognitive framework for hard/soft information 
fusion in the condition monitoring of aircraft. 

Adapted from Orasanu [17]; Klein [19]; Wickens and 
Carswell [20]; and Crandall, Klein, and Hoffman [16] 

Aviation maintenance is safety critical and complex. 
In selecting a decision-making strategy, maintainers often 

juggle competing priorities of safety against the 
organizational unit’s mission capability goals (e.g., 
completing a landing gear inspection during the night 
before the aircraft’s already scheduled dawn mission). 
One decision-making strategy that maintainers employ is 
the use of heuristics (i.e., rules of thumb). Time pressure, 
stress, or both are a rationale for using heuristics for 
decision-making. Hence, there are differences between 
“rule available” and “multiple options available.” 

The functions of macrocognition are sense-making, 
problem detection, planning, adaptation, coordination, and 
naturalistic decision-making. The processes constituting 
macrocognition are managing attention, identifying 
leverage points, managing risk, performing mental 
simulations, developing mental models, and maintaining 
common ground [25]. Faults and human observations 
regarding an aviation maintenance problem are present at 
the top level of Figure 1. The maintainer initiates problem 
detection by asking, “What is the problem?” Then, he or 
she attempts to manage risk by asking, “How much time 
is available to fix the problem? How risky is the 
situation?” Pettersen and Aase found that maintainers 
balance safety concerns with job-related time pressures 
[21]. Gill and Shergill cited managing risk as a key factor 
in the safety practices of aircraft maintenance [22]. 

The maintainer engages in sense-making and uses 
mental models in order to recognize the problem. If both 
rule and multiple options are available, the maintainer has 
a choice. Does he or she simply apply the rule, perhaps to 
manage attention, or does he or she evaluate multiple 
options? Klein et al. found that managing attention was an 
important process in problem detection [23]. In choosing 
to evaluate multiple options, the maintainer identifies key 
leverage points, and engages in planning. Zsambok et al. 
argued that problem solving is nonlinear and moves 
forward by identifying leverage points [24]. Orasanu et al. 
found that most commercial aviation accidents occurred 
when a compromised flight plan was not replanned [25]. 
After an option is chosen by the maintainer, he or she 
engages in mental simulations of each option in order to 
answer the question, “Will it work?” If the answer is 
“yes,” the maintainer performs the maintenance using 
naturalistic decision-making [24], which is decision-
making in context.  

On the other hand, if none of the options are feasible, 
the maintainer gathers more information in a process 
called “deepening” by Zsambok and Klein [24]. In 
deepening, the maintainer is context aware and engages in 
adaptation. At the same time, he or she maintains common 
ground and coordinates with flight crew and other 
maintainers. 

2 Functional framework 

Since 1988, the JDL model has served as a framework 
for information fusion research [26]. In 2002, it was 
revised by Blasch and Plano to consist of six high-level 
processes [27]. The data-information-knowledge 
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hierarchy was introduced by Cleveland in 1985 [28]. He 
explained that when data are organized, they are 
transformed into information, which is raw material for 
the formation of knowledge.  

Figure 2 and Table 2 show the levels of the JDL model 
using terms that condition-based maintenance 
professionals in aviation will recognize [11].  

 

 

Figure 2 – Functional framework for hard/soft information 
fusion in the condition monitoring of aircraft. 
Adapted from Blasch [29] and Hall et al. [30]  

 

Table 2 – The JDL model applied to hard/soft information 
fusion in the condition monitoring of aircraft. 

Source: Bernardo [11] 

Level, Name Action Example/Technique 

0 

Preprocessing 

Parameterize 
data; normalize 
text 

Reveal harmonics; convert 
“SWPLT,” “SWPL,” and 
“SWP” to “swashplate” 

1 

Object 

Assessment 

Detect, isolate, 
and identify 
faults 

Apply recognition of flight 
regime to pattern recognition, 
trending, and thresholding 

2 

Situation 

Assessment 

Diagnose the 
condition of 
the aircraft 

Failure modes and effects 
analysis (FMEA) 

3 

Impact 

Assessment 

Compute a 
prognosis 

Failure mode, effects and 
criticality analysis (FMECA) 

4 

Process 

Refinement 

Apply MOPs 
and MOEs 

Adjust fault thresholds 

5 

Cognitive 

Refinement 

Perform 
decision-
making 

“What caused the problem? Is 
the aircraft airworthy for its next 
flight?” 

 
Level 0 consists of the preprocessing of raw data using 

signal-processing techniques [31] or of the normalization 
of descriptive narratives. For example, a fast Fourier 
transform converts raw signals from accelerometers on a 
helicopter gearbox into frequency-domain representations 
to reveal harmonics and other parameters that are used in 
level-1 analyses [32]. In another example, the 

abbreviations “SWPLT,” “SWPL,” and “SWP” are all 
converted to the standard term “swashplate.” 

Level 1 integrates sensor parametric data [1] and 
observations of context. For example, the recognition of 
flight regime is important in statistical estimation, pattern 
recognition, trending, and thresholding techniques, which 
are applied in order to detect, isolate, and identify faults 
that are present on the aircraft [33]. 

Level 2 diagnoses the condition of the aircraft by 
assessing complex mechanical faults, related mission 
activities, and observations of context [1]. Failure modes 
and effects analysis (FMEA) form a basis for in-flight 
troubleshooting procedures.  

Level 3 computes a prognosis and assesses impacts [1]. 
For example, an early identification of single points of 
failure critical to mission success and safety is performed 
using Failure mode, effects, and criticality analysis 
(FMECA). The analysis recommends that engine thrust be 
limited to 85% until a scheduled retrofit at depot-level 
maintenance; however, the reduced capability makes the 
aircraft ineligible for high-altitude or high-gross-weight 
missions.  

Level 4 is a meta-process that regulates other fusion 
processes, often in accordance with measures of 
performance (MOPs) and measures of effectiveness 
(MOEs) [34]. For example, fault thresholds are adjusted to 
reduce the number false positives. 

Level 5 supports effective and efficient proactive 
decision-making [29]. For example, a maintainer asks, “Is 
the aircraft airworthy for the next flight?” In response, the 
system should report values for components that have the 
least remaining useful life.  

Sources are maintainers, aircrew, and electronic 
sensors; the consumer is the maintainer. The data-
information-knowledge hierarchy is juxtaposed to show 
the progressive creation of information from data and 
knowledge from information [30]. The level of inference 
increases as the level of the information fusion increases 
[1]. According to the human-centered cognitive systems 
engineering principles [35], machines’ capabilities to 
perform information fusion are dominant at lower levels 
of fusion. In contrast, maintainers’ capabilities to perform 
information fusion are dominant at the higher levels of 
fusion. 

The work of an aviation maintainer involves decision-
making in order to select an aircraft component for repair, 
replacement, fabrication, or calibration; knowledge (i.e., 
awareness and familiarity gained by experience of 
situations) of the maintainer as well as information are 
accessed. The maintainer would utilize a hard/soft 
information fusion system in order to integrate 
information with this knowledge. In accordance with the 
human-centered approach that is a main theme of this 
research, Hall et al. aptly said, “The utility of the 
[information] fusion system must be measured by the 
extent to which it supports effective decision-making” 
[30]. 
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3 Discussion 

Carroll and Johnson said, “Decision-making is a process 
by which a person … identifies a choice to be made, 
gathers and evaluates information about alternatives, and 
selects from among alternatives” [36]. Decision makers 
often gather information from people. Researchers from a 
myriad of medical environments, including nursing 
[37][38], physician practice [39], clinical decision-making 
[40], and audiology [41], have studied medical 
professionals’ information-seeking behaviors to make 
inferences about the cognitive processes underlying their 
decision-making and its implications for diagnoses, 
treatments, and resulting outcomes.  

In nursing, Bucknall found that the nurses’ decision-
making was strongly influenced by contextual variables, 
such as time, risk, and resource availability [37]. 
Carnevali and Thomas demonstrated that task complexity 
is a factor in the number of cues that nurses found 
accessible [38]. In physician practice, Eddy argued that 
ambiguity about a patient’s symptoms weakens the links 
between a patient’s true condition and the chosen 
diagnosis and treatment [39]. Dee and Blazek [42] found 
that physicians seek input from colleagues because they 
convey relevant, context-aware information [43]. The 
impact of these contextual variables on decision-making 
has implications for improving patient outcomes. 

The researchers listed above studied health 
professionals’ information-seeking behavior to make 
inferences about the cognitive processes underlying their 
decision-making. A similar research design methodology 
is valid for studying aviation maintenance, because, as 
Hobbs said, “From a human factors perspective, 
maintenance personnel have more in common with 
doctors than with pilots” [6]. 

Rationality is a style of behavior in which cost and 
benefit (a.k.a. utility) are weighed toward the achievement 
of a goal. The theory of bounded rationality incorporates 
the influence of the field environment (i.e., context) on 
cognitive processes related to information seeking and use  
[44]. According to Simon, decision makers exhibit two 
cognitive styles: satisficing and optimizing [45]. 
Satisficers make decisions quickly based upon 
information that is easy to access. In contrast, optimizers 
make lengthy, careful decisions only after finding 
information that is difficult to acquire.  

In the cognitive framework (see Figure 1), satisficing 
maintainers apply rules (i.e., training, experience, or 
procedures have provided ready-made solutions). For 
example, “low tire pressure fault” leads to a prescribed 
maintenance action: inflate the tire. Optimizing 
maintainers weigh multiple options by seeking additional 
information. For example, a description of “fuel system 
fault” may be associated with the following maintenance 
actions: “replace fuel pressure sensor,” “replace fuel 
filter,” “replace fuel pump,” and “unknown.” The latter 
set requires a nontrivial decision posed as a choice. 

Goals and information are required in order for 
maintainers to engage in the cognitive processes of 
decision-making. Diagnosing a fault and choosing to 
perform a maintenance action requires seeking 
information and understanding the desired goal. 
Maintainers of aircraft who are satisficers apply rules 
using sensor data; in contrast, maintainers who are 
optimizers evaluate multiple options using electronic data 
and human observation. Given that assumption, 
maintainers of aircraft who use only sensor data would 
apply rules as their decision-making strategy; those who 
use human observations and sensor data would evaluate 
multiple options. 

In terms of information-seeking behavior, the difference 
between “rule applied” and “multiple options” is that 
maintainers who applied a rule did not seek additional 
information, but maintainers who evaluated multiple 
options sought additional information. Contextual factors 
such as complexity influence decision-making [37]. 
Complexity weakens the links between the diagnosis and 
the actual condition of the aircraft. Maintainers’ 
information-seeking behavior shows that they confer with 
aviation professionals (e.g., pilot, copilot, crew chief, 
other maintainers) because these professionals offer 
relevant, context-based assessments, which is valuable in 
disambiguating a complex problem. 

Consider the decision–making strategy chosen by 
maintainers of aircraft. Before selecting another 
information source, a maintainer must first decide to seek 
additional information. Covell et al. observed that less 
than 30% of physicians’ information needs toward patient 
care were ever pursued; therefore, most patients were 
diagnosed and treated without additional information 
seeking [46]. Gorman and Helfand demonstrated that the 
urgency of the problem and the belief in a definitive 
answer were positive predictors of physicians seeking 
additional information [47].    

3.1 Suggestions for further research 

In the author’s ongoing research, a large data set is 
utilized that contains hard data in the form of built-in test 
codes, and soft data in the form of descriptive and 
corrective maintenance narratives. Maintainers’ 
information-seeking behaviors are observed to make 
inferences about the cognitive processes underlying their 
decision-making and its implications for diagnoses, 
treatments, and resulting outcomes. 

Additionally, the research approach could be utilized to 
study hard/soft information fusion in other domains where 
human observations could be added to diagnostic 
procedures (e.g., medicine, maintenance of ground 
vehicles).  

Furthermore, interactive electronic technical manuals 
(IETMS) could be enhanced using collaborative filtering 
(CF), which is a set of data fusion techniques utilized by 
many recommender systems (e.g., Tapestry [48], 
GroupLens [49]). Perhaps best known as “Customers Also 
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Bought,” CF has been used successfully by large online 
retailers (e.g., Amazon) as a way to enhance customers’ 
online shopping experience. Essentially, CF is the process 
of recognizing patterns of information from multiple 
sources [50]. CF techniques typically operate over large 
data sets.  

CF techniques could be successfully applied to the 
domain of aviation maintenance. For example, k-means 
clustering could be utilized to identify the k most similar 
diagnostic maintenance actions for a set of human 
observations and built-in test codes on a particular aircraft 
variant. The resulting ranked list of the aircraft 
components could be titled “Maintainers Also Chose.”  

Furthermore, maintainers’ information-seeking behavior 
could be guided toward statistically better outcomes 
during the diagnostic process by enhanced IETMS that 
have analyzed historical maintenance actions 
corresponding to the aircraft variant undergoing 
maintenance. For example, “80% of the time, a better 
outcome occurred when the pilot was asked this additional 
question.” 

4 Conclusions 

The synergistic integration of information from 
electronic sensors and human sources is called hard/soft 
information fusion. In the condition monitoring of aircraft, 
the addition of the multisensory capability of human 
cognition to traditional condition monitoring creates a 
more complete picture of aircraft condition.  

Cognitive and functional frameworks were applied to 
hard/soft information fusion in the condition monitoring 
of aircraft. The macrocognitive functions and processes of 
the aviation maintainer aligned with the steps of the 
cognitive framework. Emerging literature on hard/soft 
information fusion in condition monitoring was organized 
into the levels of the JDL model, and the levels were 
applied to the process functions of aviation maintenance. 

The contributions of this research to the area of the 
study of hard/soft information fusion have been 
thoroughly discussed, but it would be remiss not to 
consider the practical applications of these findings, 
especially to the area of aviation maintenance. The 
addition of human observations can improve the outcome 
of aviation maintenance, so the most likely application 
would be to enhance IETMS by using CF techniques of 
data fusion.  

In ongoing studies, maintainers’ information-seeking 
behaviors are observed to make inferences about the 
cognitive processes underlying their decision-making and 
its implications for diagnoses, treatments, and resulting 
outcomes. Improved outcomes and reduced diagnostic 
effort may reduce operational maintenance cost, increase 
mission readiness, and increase flight safety. 
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