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Abstract — Single- and multi-target tracking are both
typically based on the hidden Markov chain (HMC)
model. That is, the target process is a Markov chain,
observed by an independent observation process. Since
HMC independence assumptions are invalid in many
practical applications, the pairwise Markov chain
(PMC) model has been proposed as an approach for
weakening them. Petetin and Desbouvries subsequently
proposed a PMC generalization of the probability
hypothesis density (PHD) filter, but their derivation was
somewhat heuristic. The first major purpose of this
paper is to construct a solid theoretical foundation for
the Petetin-Desbouvries filter—which turns out to be a
multitarget HMC model rather than a true multitarget
PMC model. The second major purpose is to use this
foundation to devise PMC versions of any random finite
set (RFS) filter, thus allowing tracking of targets with
non-HMC dynamics.

Keywords: Multitarget tracking, PHD filter, pairwise
Markov chain, random finite set, point process.

1 Introduction

Single-target and multitarget tracking algorithms are
typically based on hidden Markov chain (HMC) models.
In the single-target case, the evolving target process

Xk o Xp,.00, X

is a Markov chain of random state-vectors that, at times
t1,...,lr is observed by independent observation processes

Yl:k ZY],...,Yk.

HMC independence assumptions are often not valid in
practice : plant noise can be correlated with measurement
noise; or current measurement noise can be correlated with
earlier measurement noise (e.g., colored noise).

In the single-target case, Pieczynski's pairwise
Markov chain (PMC) model [6-9] has been proposed as a
means of relaxing HMC assumptions. Ina PMC,

X Yig) 1 X1, Y, (X5, Y

is a Markov chain, even though X, need not be a
Markov chain.  As a consequence, the following
inequalities are possible for a PMC:
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S XY ) = X X)), (1

SO XXy ) = (Y X)) 2

Pieczynski and Desbouvries have described concrete,
practical ~ Kalman filter-based  applications  and
implementations of PMCs to single-target tracking in [8].

A detailed tutorial introduction to PMCs is beyond
the scope of this paper. Readers with questions should
consult [8] and the /IEEE Transactions papers [6,9].

Petetin and Desbouvries proposed a PMC
generalization of the probability hypothesis density (PHD)
filter in their 2013 IEEE Transactions paper [5]. They
described  concrete  practical  applications  and
implementations based on [8]; and demonstrated that their
filter has better tracking performance than the classical
PHD filter under non-HMC conditions.

However, their derivation was somewhat heuristic in
that it lacked a general theoretical foundation. This paper
therefore has two major purposes. The first is to provide
such a foundation. As will be seen, this turns out to be a
multitarget HMC (M-HMC) model rather than a true
multitarget PMC (M-PMC) model. That is, an M-HMC
model is used to address targets that have, individually,
PMC dynamics. The crucial insight consists of Egs.
(37,38), which show that any PMC can be reformulated as
an HMC with a Dirac-delta likelihood function.

The second major purpose is to use this M-HMC
foundation to allow the construction of PMC versions of
any random finite set (RFS) filter, thus making it generally
possible to track targets with PMC dynamics.

However, this denouement leaves a major question
left unaddressed: What of multitarget systems that are
governed by true M-PMC dynamics? An investigation
into this matter was initiated in the recent conference
paper [2]. It was shown there that the PMC approach can
be directly generalized to multitarget detection and
tracking (see Section 3)—but that the resulting multitarget
filters appear to be computationally intractable. Thus [2]
also reported an exploratory attempt to devise, using
finite-set statistics [1,3,4] techniques, a cardinalized PHD
(CPHD) filter predicated on true M-PMC dynamics.

This paper is organized as follows. Single-target
PMCs are reviewed in Section 2 and their generalization
to multitarget PMCs in Section 3. The Petetin-
Desbouvries PMC-PHD filter is briefly reviewed in
Section 4. The theory for this and other PMC-RFS filters



is described in Section 5. As an example, the formulas for
a PMC-CPHD filter are given in Section 6. Mathematical
derivations have been relegated to Section 7. Conclusions
can be found in Section 8.

Since Petetin and Desbouvries initiated the study of
M-PMC systems, their PMC notation will be employed
throughout. This includes their practice of distinguishing
between two kinds of measurements: unknown
measurements y; that are part of a PMC state (X,Yx)
and known measurements z; collected from that state.

2 Single-Target PMCs

HMCs are the theoretical basis for conventional single-
sensor, single-target tracking. Let x; be the state of a
target at time #. Assume that: (1) the time-evolution of
x; is described by a Markov transition density AXi[X-1);
(2) the target is observed by a single sensor with unity
probability of detection and no false alarms; and (3)
Azilxr) is the probability (density) that measurement z
will be collected if the target has state x;. Then the
stochastic dynamical system (Xi, Yi) for k>1 isan
HMC if its total bivariate distribution f{x; .4|yi.x) factors
as (see Eq. (1) of [5]):

k k
ﬂxlzksyl;k) = flx1) (Hf(xi|xi—l )> (Hﬂ)ﬁ-’m)

i=2

3)
where f{x;) is the distribution of the target state at time
ti. Equivalently, the HMC is defined by the recursion

S& Y )= LY )
’f(xk ‘xk—l)'f(yk |Xk)

for k> 1. Integrating both sides of this with respect to

“)

results in
Sy )=S0y |Xk)I.f(Xk [X:0)

XY A
from which follows the single-equation recursion for the
single-target Bayes filter:

Sy D= Gy kfl)il S x0)
[ A ) F O Yy )

X1-1

(6))

(6)
PMCs were introduced in 2000 by Pieczynski [6,9] and
have begun to generate a substantial sub-literature. A
PMC is a joint dynamical system (Xi.x Yi:x) whose
evolution is governed by a bivariate Markov transition
density

SELY XL YD) = SV X0 X500 Vi)
f(Xk |xk717yk71)
(where the right side follows from Bayes' rule) and whose
total bivariate distribution factors as

(7
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k
Sy ) =y ) [ LAy xeny)),
=2 (8)
where f(x1,y1) is the distribution at time ¢;.

PMCs significantly weaken HMC independence
assumptions—see, for example, [5], p. 4487.
Measurement and plant noises need not be uncorrelated,
for example; and measurement noise need not be
uncorrelated frame-to-frame.

A PMC reduces to an HMC if

f(xlayl) :f(xl)'f(yl |x1) (9)

and if, for £>1,
SO XXy =y 1%, (10)
S XY = S X)) QY

A target can be tracked even if its state is part of a
PMC but is not itself an HMC. The recursion formula for
the measurement-updated target state is (see Eq. (12) of
Petetin and Desbouvries’ IEEE Transactions paper [5]):

Sy
_ JAGLY e XY ) f Xy 1Yy e)dx,
S OYi XY ) S LYy o)X dx
From this, the recursion formula for the measurement-
updated PMC state (Xx,yx) can be shown to be:

SGY Y )
_ TGy X oY) (K Yia 1Y o0)d,
.[f(x'l(—l’ykfl [y, k—z)dx;t—l .
For completeness, the derivations of Egs. (12,13) are
given in Section 7. The two distributions are related by

SELY Y )= Sy ) S LY )
(14)

(12)

(13)

where

SOy )= jf(’%sh I X 15 Y1)
S 1Yy o)dx,dx.

(15)

3 Multitarget PMCs (M-PMCs)

An M-PMC generalizes a PMC in the obvious manner.
Let X = {x1,...,X,} be a multitarget state-set with |[X]=n
> 0 and let Y = {yi....ym} be a multitarget
measurement-set with [¥Y] = m > 0 . An M-HMC is
defined by the factorization

k k
X V) = | [ ey || ] o

=2 i=1

(16)

where f(XiXi-1) is the multitarget Markov transition
density and A(Z]X;) is the single-sensor, multitarget
likelihood function. The multitarget analog of Eq. (6) is
the multitarget Bayes filter [1,3,4]:



f(Xk ‘Yl : lc)zf(Yk |Yl : k—l)il'f(Yk |XA)

ANCAPARTC AN AN o

(7
where the indicated integral is a set integral.
A multitarget PMC is defined by the factorization

k
SX e Y1) :f(XlaY])Hf(XiaYiLXi—lnYi—l):

=2 (18)
where
SX YilXior, Vi) = fNdX s Xt Yier)
'f(Xlek—lek—l) (19)

is the transition density that specifies M-PMC evolution.
The obvious multitarget analog of the multitarget
recursion of Eq. (12) is

SX 1Y)
_ J.f(Xk’Yk |Xk-1:Yk-1)'f(Xk_1 |Y; : k-1)5Xk—1
.[f(XA’Y/c | X/;—]’)]I(—l)'f(xl;—l | Y] : ,{71)5)(,;715/\’,'{
The obvious multitarget analog of the PMC recursion, Eq.
(13), is
VAC.O% (D Ay
XY XY S Y K )8, G
[/ (XY [ )8,

where the integrals are set integrals. The two distributions
are related by

(20)

SXe Vil Yiao1) = [ Y1ae1) < QG Y1)

where

(22)

SENY )= [FT X Y)
'f(Xk-l |Y1 : k—1)6Xk—16Xk'

(23)

4 The Petetin-Desbouvries Filter

Because the multitarget Bayes filter of Eq. (17) is
computationally intensive in general, the techniques of
finite-set statistics have been used to derive various
approximate filters—see [1,3,4]. The simplest of these is
the PHD filter, in which the predicted multitarget
distributions f{Xi|Zi «-1) are assumed to be approximately
Poisson:

FXZ14) = & AP T Dz ),

XeXy (24)
The PHD filter recursion (without spawning) is given by
D(x, |Z, . ;) =b(x;)
(25)

+ [ ps () F(x, 1%00)
DX,y | Z, . )dx,

and
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D(x,|Z,.}) _

————=1-p,(x;
D17, P 26)
pD(Xk)'f(Yk | Xk)
z,€Z; K(Zk)+T(Zk ‘ Zl : k*l)
where

(2, |2y, 40) = JpD(Xk)'f(yk |%)-D(x, | Z, . )dx,.(27)
Here, b(xx) 1is the PHD for target appearances; ps(Xi-1)
is the survival probability for a target with state Xj—i;
po(xx) is the probability of detection for a target with state
Xt ; K(zx) is the PHD (intensity function) of the clutter
process; and Z; is the measurement-set at time #.

Since the PMC recursion equations Egs. (20,21) are
computationally  demanding, a PHD filter-like
approximation of one or both would be even more
desirable. Petetin and Desbouvries have proposed such a
filter in their /EEE Transactions paper with time-update
equation ([5], Eq. (20))

D(x,y, 12, )
= ka(leyk)

(28)
+_[Ps(xk-1)'.f(xk7Yk | X5 ¥im)
DX, Y 1 2 o)dX,dy,

and measurement-update equation ([5], Eq. (21))
D(x,y | Z, . )
D(x,,y, 1Z, . ) (29
= 1_pD(xk) )
X,)0 v
+Z Po(x;) zk(yk)
nez, K2z )+7(z, | Z) )

where
(z, | Z, . k—l):J.pD(xk)'D(Xkﬂzk 1 Z, . k—])dxk'(30)

Furthermore, suppose that single-target PMC dynamics are
actually HMC. That is, assume Egs. (10,11) and

b(xp,y, ) =b(x;): f(y, [x;) (€2))
Then Petetin and Desbouvries note that Egs. (28,29)
reduce to Egs. (25,26) if they are marginalized by

integrating with respect to yx. For, after marginalization
Eq. (28) becomes

D, |Z,. ) =b(xy)
+J.ps (X, ) S %) (32)
DX | Z))dx,
and, likewise, Eq. (29) becomes
D(x,,|Z, . )= (l_pn(xk))'D(xk 1Z, )
N Z Po(X) DXz, | Z) ) (33)
2,2, Kz )+7(z, [Z, . )

where, after some algebra,
Dx.z, [ Z, . )= [z, Ix,)



' b(x ) +[ps (X, ) f(X, [%,) (34)
DX, 1 Z, . )dx,

=f(z, %) DX, | Z, ) (35)
in which case Eq. (33) becomes equal to Eq. (26) since
Eq. (30) similarly becomes equal to Eq. (27).

5 M-HMC Theory for PMC Targets

The section is organized as follows: An HMC formulation
of PMCs (Section 5.1); an M-HMC formulation of M-
PMCs (Section 5.2); and a theoretical M-HMC foundation
for the RFS filtering of PMC targets (Section 5.3).

5.1 An HMC Formulation of PMCs

A PMC can be reformulated as a particular kind of HMC.
Regard the Markov chain (Xi4 Yix) as an HMC,
observed with a sequence z; . of collected measurements.
That is, the state of the PMC system at time # is (Xx, Y&)
and a measurement z; is collected from it. Define the
likelihood function

LZA(Xkayk) :f(Zk|Xk9yk) = 6Zk(yk) (36)

where 84(y) is the Dirac delta function concentrated at
z. Then Eq. (13) is equivalent to a recursive Bayes filter
with time-update equation

SELyelzy )

=If(xk’yk | XY i) (37)
'f.(xk—lﬂyk—l |Zl k-1 )dxk—ldYk—l
and measurement-update equation
S&oyelzy )
_ L, (X, ¥y) Sy lz, ) (38)
.“Lz,( (X;(’y;c).f'(x;(’y;c |Zl T k-l )dx’kdy'k
For, from Eq. (38) we get
Sy lz )
= 61}(4 (Vi) S (X Yot 12 4) (39)
J5zk,, (Y;c—l) : f(xykfl’ y’k—l |z, kfz)dxyk—ldy’kfl
Substitute this into Eq. (37) to get Eq. (13):
Sy lzy )
(40)

_ Ty X2 ) S (X2 |20 0)dx
J-f(X;H’Z;H lz, . )dx;c—l

5.2 An M-HMC Formulation of M-PMCs

An M-PMC can be similarly recast as an M-HMC, via the

following analogs of Egs. (37,38):

JXLY N2y )= J.f(Xk’Yk | X Y)
’4f(Xk—1’Yk—l ‘ Zl : k—l)an—ISYk—l

(41)
and
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f(Xk’Yk |Zl : /c)

= sz(Xk’Yk)'f(XkaYk|Zl;/H) (42)
[L, (X, Y)- f(X0 Y 2y )6, 6Y,
and where
L,(X,Y)=6,(Y) (43)

and where 94(Y) is the multi-object Dirac delta function
concentrated at Z, as defined in [1], Eq. (4.15).

5.3 A Theory of Multiple PMC Targets

Eqgs. (37,38) provide the crucial insight necessary for a
systematic theoretical foundation for the Petetin-
Desbouvries filter. A single-sensor, single-target HMC is
a Markov chain X 4, equipped with a transition density
Sxixi-1) and a likelihood function f{zixx). A single-
sensor, single-target PMC is a Markov chain (Xi 4, Y1 %),
equipped with a transition density f{Xryi/Xk-1,y4-1) and a
special Dirac-delta likelihood function  f(zi|x,yx). PMC
theory is extended to the multi-object case using an
analogy with conventional RFS multitarget tracking.
Make the following assumptions :

1) The evolution of a system of PMC pairs is described
by a Markov chain of RFSs £, where any

draw E; =X; of E; is a finite set of PMC pairs.
The state-transition of an individual PMC pair
(Xi-1,Y4-1) is a Bernoulli process. That is, either
(Xk-1,yx-1) disappears with probability 1— ps(Xi-1,yx-1)
or else it survives with probability — ps(Xi-1,yi-1), in
which case its dynamics are described by the PMC
transition function f{Xk,YXk-1,Yk-1)-

The probability of survival of a PMC pair is that of the
corresponding target:  ps(Xi-1,¥i-1) = ps(Xi—1).

The state-transition processes of multiple PMC pairs
are statistically independent, in which case the multi-
object transition process is multi-Bernoulli.

In any such state transition, new PMC pairs may
spontaneously and independently appear.

The measurements collected from a system of PMC
pairs at time # is described by an RFS X, where
any instantiation Xx= Z; of Z; is a finite set of
measurements .

The measurement-generation process for an individual

=
=k

2)

3)

4)

5)

6)

7)

pair (XwYyr) is Bernoulli. That is, either (XxYx)
generates no measurement with probability 1—
po(Xi,yi), or else it generates a measurement with

probability  pp(Xi,yx), in which case the generated
measurement is Y .

8) The probability of detection for a PMC pair is that of
the corresponding target: pp(Xi.yx), = pp(Xx)-

9) The measurement processes of multiple PMC pairs are
statistically independent, in which case the multi-
object measurement process is multi-Bernoulli.

10) During any measurement collection, spurious clutter
measurements may independently occur.



The consequence of these assumptions is that a system of
multiple PMC pairs is a multitarget HMC, not a true
multitarget PMC. Because of Assumptions 1-5, the multi-
object Markov state-transition density for this system is
given by Eq. (7.6) of [1]:
SX X))
= b(X,)- (1= py)™
Ps(X4y i Yior,i)
Z H 'f(xk,e(i)aYk,eu) [ X, 1> Vi)
6 i:6()>0 (1 = Ps (Xk—l,i’ yk*l,i))
: b(xk,e(i)’ Yk.e(i))
with corresponding probability generating functional
(p.g.fl.) given by [1], Eq. (7.5)

GlhXi ] = GBly] - (1 - ps +psM;, ). (45)
The consequence of Assumptions 6-10 is that the multi-
object likelihood function is given by Eq. (7.2) of [4]:

F(Z | X)) = K(Z) (1= pp)™
) pD(Xk,iJYk,i)’5zw,,(yk,1)
0 i:6()>0 (1 - pD(Xk,Hyl(,i))' K(Z; )
with corresponding p.g.fl. given by [1], Eq. (7.1):
Glg, | X, 1= G"[g,1-(A-p, +pDLgk )R CY))

Lgk (Xi,[’Yk,[)zgk (Yk,[)- (48)
From Eq. (10,11) it follows that the corresponding M-
PMC transition function is f{YiX) - AXiXi-1)-

It also follows from this discussion that any RFS
filter can, if it is based on standard multitarget tracking
assumptions, be transformed into an M-PMC filter by
simply substituting  fXeYiXe-1,¥5-1) for  AXiXi-1)
Azixeyr)  for fzfxi), ps(Xi-1,yi-1)  for ps(xi-1), and
Po(Xk,Yk) for pp(x). The clutter process remains
unchanged, whereas the birth process must be defined for
PMC pairs (xk,yx) rather than for targets x;.

Furthermore, it follows that—from a strictly rigorous
point of view---the Petetin-Desbouvries approach is
implicitly an H-PMC constructed from single-target
PMCs. A true M-PMC would require the construction of
an M-PMC transition function  f{Xk, Yi|Xi-1,Yi-1).
Preferably, in the M-HMC special case this transition
function should reduce to AXiXi—1)AYiXr), where
fYdXe)  and fiXiXi-1) are, respectively, the standard
multitarget likelihood function and standard multitarget
transition density. This was the subject of the recent
conference paper [2].

(44)

(46)

6 Example: A PMC-CPHD Filter

The section is organized as follows: The PMC-CPHD
filter time-update (Section 6.1), the PMC-CPHD filter
measurement-update (Section 6.2), and multitarget state
estimation (Section 6.3).
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6.1

Suppose that we are given: (1) the spatial distribution
S(Xp-11Z1a-1)
the expected number of PMC pairs
N1

Time-Update

and the distribution
POt 121 4-1)
on the number
M
of PMC npairs (i.e, cardinality distribution)
equivalently, its probability generating function (p.g.f.)
G -11Zra-1)
Given this, the time-updated PHD is given by
D(Xk ’yk ‘ Zl : k—])

or,

=b(x,.y,)

(49)
+J.l.7s(xk71a3’k71) S Y XY i)
'D(Xk—I’Yk—l |Z, )dxdy, .
The corresponding spatial distribution is
. D1y, 1Z141)
S Yl Z1ar) = et —
ID(Xk,yk|lek—l )Xkdyk (50)
The predicted cardinality distribution and its
corresponding p.g.f. are given by
GOielZ141) = GP (i)
<G =i+ % ilZ1kr)
POlZisr) = D, plinlin-r)
n-120
PG |Zrg1) 1)

where
Vi = J.ps(xk—layk_l) < S(Xpet5 Yy 12141 ) X4 dy

(52)
and where

Nk
Piglier) = D pPGig— 1) = Ciy s = i1 =)o,
i=0

(53)

6.2 Measurement- Update

Suppose that we have: (1) a new measurement-set
Zk = {Zl,...,ka}
with |Zy] = my ; the predicted spatial distribution
5(Xk,yk|zlzk—1) ;
and the predicted cardinality distribution
PlZ 1)
or, equivalently, its p.g.f.
G(XrlZrx-1)
(which will be abbreviated as
G(Xg) ).



Let

Nk = G(l)(1|Zl:k—l)- (55)

Given this, the predicted PHD is given by the PHD is
given by
D(x,y, 1Z, . W) =Ly (X,¥,) DX,y 1Z, . )
(56)
where
LZk(Xkayk)

=L
Ny

ND
(1 =pp(Xi,y,)) Lz
my P&RYLy(x) P
IR e )
57
where
ND

Ly

o (my = D)1+ p*(my — i)

0i(Zi) » GV (1)
2o (mg =Dt p*(mi =1
01(Z) - GO($)

(58)
and
zlk (Zj)
M g —i= 1)L pN(m—i = 1)
0i(Zi = {z}) - GTD(y)
rolmg =D p(my—1)
0/(Z;) + GO ()

(59)
and where

0, = [ (1= pp(x,¥,))-3(x,.y )dx,dy,  (60)
7,(z,) fk(zmk)j (61)

seeey
Ck (Zl) ck (ka )

O, (Zk) = O-m,i[

and

0i(Zy —<z})
i
Tk(z1) 7k(z))
= Oyt ci(z1)’” .%' ’(ZCHI)(Z/') ? :
£ (Zmy

i@y

(62)
and where

T:(z) = IpD(xk,z) « S(Xp, 2)dXy; ©3)

and where

N
VisewosVjserosVm
indicates that y; has been removed from the list yi,..., V.

Finally, the measurement-updated cardinality
distribution and p.g.f. are, respectively,
» Uz, () = pOilZy s
B = e R S
50 YZk PUIL -1 (64)
and
G(iy)
7 (=) - pN(mg =)
GOy - di) = 0(Zs)
o my = )b p*(my — i)
GOGy) - 0:(Z0)
[y k 65)
where

Uz, ()
min{m g,niy

=0 (my =)t p*(my =)
gl Cirj oy = 0i(Z1)

" (g — )1 - (g — ) ‘
«a,(Z1) - GO () 66)

6.3 PMC-CPHD Filter: State Estimation

State estimation for he PMC-CPHD filter is accomplished
in the same manner as the “classical” CPHD filter.

7 Mathematical Derivations
From Bayes' rule we know that

f(xkaykb’];k,]) =f(xk|yl;k) 'ﬂyk‘yl;k,ﬂ (67)

and so
Sy Y )
k 1 k)= (68)
R TR T
_ f(yxk,yk\yl;kfl) _ (69)
[NACTR A AN &
However,

SVl ) = [y y, )
.f(xk—l |y1;k71 )dxk—l (70)

For,



S i)
(71)
= jf(xka)’kaxl NTIRES SRR 1) S
= [/ oy 0ax (72)
= If(xk’yk | X415 ¥5) 73)
S Y )dX
= J-f(XkDYk | X415 ¥50) (74)

S XYy )X
from which Eq. (70) and thus Eq. (12) follow.
We are to prove Eq. (13). For from Eq. (70) we get

SXLYHY )= jf(xk!yk | X5 ¥ i)
‘f(xk-1>Y1 : k-1 )dxk—uk—l

(75)

= j.f(kaYk | X5 ¥e)
S XYY )X,
which results in Eq. (13):
SELYe Y )

( T Y e XY e) J (77)
B S Y Y )X
.[.f(x;f—1:Yk—1rY1 k-2 )dx/k—l

JfLY e XY i)

_ 'f(xlf-n)’k-l Iy, . k—z)dxlf—l ' (78)

T Y 1Yy gn)dx,

(76)

8 Conclusion

The recent conference paper [2] initiated a study of
random finite set (RFS) filters for multitarget applications
that are subject to relaxed independence assumptions. The
main object of study is the multitarget pairwise Markov
chain (M-PMC) model described in Section 3. The M-
PMC model addresses situations in which the current
multitarget state-set can depend on the previous
multitarget measurement-set, and in which the current
multitarget measurement-set can depend the previous
multitarget measurement-set and on both the current and
previous multitarget state-sets:
S NX Yo = F(X 1Y), (79)
JENX XY )= [ X)) (80)
This paper addressed a simpler problem: multitarget
hidden Markov chain (M-HMC) models for targets that
have PMC dynamics. A theoretical foundation for such
models was developed. It was shown that this foundation
allows one to construct PMC analogs of any RFS filter
that is based on the standard multitarget motion and

measurement models. In particular, it was shown that the
Petetin-Desbouvries PMC-PHD filter [5] arises as a

special case. As an illustration, a PMC-CPHD filter
generalization of that filter was described. Thus it is now
possible to track multiple targets whose dynamics are not
necessary govered by restrictive HMC independence
assumptions.  Petetin and Desbouvries have given
concrete application and implementation examples of how
this can be accomplished [5].

It should be emphasized that the line of investigation
in [2] has merely initiated the study of M-PMC systems.
Many questions remain. For example, the definition of the
M-PMC transition function f{Xk, YilXi-1,Yk-1)  in [2] was
chosen in part because it leads to potentially tractable
formulas. A more intuitive understanding of physically
reasonable M-PMC transition functions is required.
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