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Abstract – Single- and multi-target tracking are both
typically based on the hidden Markov chain (HMC)
model. That is, the target process is a Markov chain,
observed by an independent observation process.  Since
HMC independence assumptions are invalid in many
practical applications, the pairwise Markov chain
(PMC) model has been proposed as an approach for
weakening them.  Petetin and Desbouvries subsequently
proposed a PMC generalization of the probability
hypothesis density (PHD) filter, but their derivation was
somewhat heuristic.  The first major purpose of this
paper is to construct a solid theoretical foundation for
the Petetin-Desbouvries filter—which turns out to be a
multitarget HMC model rather than a true multitarget
PMC model.  The second major purpose is to use this
foundation to devise PMC versions of any random finite
set (RFS) filter, thus allowing tracking of targets with
non-HMC dynamics.

Keywords: Multitarget tracking, PHD filter, pairwise
Markov chain, random finite set, point process.

1 Introduction
Single-target and multitarget tracking algorithms are
typically based on hidden Markov chain (HMC) models.
In the single-target case, the evolving target process

X1:k : X1 , . . . ,Xk

is a Markov chain of random state-vectors that, at times
t1,…,tk is observed by independent observation processes

Y1:k : Y1 , . . . ,Yk.
HMC independence assumptions are often not valid in
practice : plant noise can be correlated with measurement
noise; or current measurement noise can be correlated with
earlier measurement noise (e.g., colored noise).

In the single-target case, Pieczynski's pairwise

Markov chain (PMC) model [6-9] has been proposed as a
means of relaxing HMC assumptions.  In a PMC,

!X1:k,Y1:k" : !X1 ,Y1", . . . , !Xk,Yk"
is a Markov chain, even though X1 :k need not be a
Markov chain.  As a consequence, the following
inequalities are possible for a PMC:

,)|(),|( 111 ### * kkkkk ff xxyxx (1)
).|(),,|( 11 kkkkkk ff xyyxxy *## (2)

Pieczynski and Desbouvries have described concrete,
practical Kalman filter-based applications and
implementations of PMCs to single-target tracking in [8].

A detailed tutorial introduction to PMCs is beyond
the scope of this paper. Readers with questions should
consult [8] and the IEEE Transactions papers [6,9].

Petetin and Desbouvries proposed a PMC
generalization of the probability hypothesis density (PHD)
filter in their 2013 IEEE Transactions paper [5]. They
described concrete practical applications and
implementations based on [8]; and demonstrated that their
filter has better tracking performance than the classical
PHD filter under non-HMC conditions.

However, their derivation was somewhat heuristic in
that it lacked a general theoretical foundation. This paper
therefore has two major purposes. The first is to provide
such a foundation.  As will be seen, this turns out to be a
multitarget HMC (M-HMC) model rather than a true
multitarget PMC (M-PMC) model.  That is, an M-HMC
model is used to address targets that have, individually,
PMC dynamics. The crucial insight consists of Eqs.
(37,38), which show that any PMC can be reformulated as
an HMC with a Dirac-delta likelihood function.

The second major purpose is to use this M-HMC
foundation to allow the construction of PMC versions of
any random finite set (RFS) filter, thus making it generally
possible to track targets with PMC dynamics.

However, this denouement leaves a major question
left unaddressed:  What of multitarget systems that are
governed by true M-PMC dynamics?  An investigation
into this matter was initiated in the recent conference
paper [2].  It was shown there that the PMC approach can
be directly generalized to multitarget detection and
tracking (see Section 3)—but that the resulting multitarget
filters appear to be computationally intractable.  Thus [2]
also reported an exploratory attempt to devise, using
finite-set statistics [1,3,4] techniques, a cardinalized PHD
(CPHD) filter predicated on true M-PMC dynamics.

This paper is organized as follows. Single-target
PMCs are reviewed in Section 2 and their generalization
to multitarget PMCs in Section 3.  The Petetin-
Desbouvries PMC-PHD filter is briefly reviewed in
Section 4.  The theory for this and other PMC-RFS filters
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is described in Section 5.  As an example, the formulas for
a PMC-CPHD filter are given in Section 6. Mathematical
derivations have been relegated to Section 7.  Conclusions
can be found in Section 8.

Since Petetin and Desbouvries initiated the study of
M-PMC systems, their PMC notation will be employed
throughout.  This includes their practice of distinguishing
between two kinds of measurements: unknown
measurements yk that are part of a PMC state  (xk,yk)
and known measurements zk collected from that state.

2 Single-Target PMCs
HMCs are the theoretical basis for conventional single-
sensor, single-target tracking.  Let xk be the state of a
target at time tk.  Assume that: (1) the time-evolution of
xk is described by a Markov transition density f(xk|xk−1);
(2) the target is observed by a single sensor with unity
probability of detection and no false alarms; and (3)
f(zk|xk) is the probability (density) that measurement zk

will be collected if the target has state xk.  Then the
stochastic dynamical system (Xk, Yk) for k ) 1 is an
HMC if its total bivariate distribution f(x1 :k|y1 : k) factors
as (see Eq. (1) of [5]):

f!x1:k,y1:k" # f!x1" !
i#2

k

f!xi|xi#1" !
i#1

k

f!y
i
|xi"  

(3)
where f(x1) is the distribution of the target state at time
t1.   Equivalently, the HMC is defined by the recursion
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for k > 1.  Integrating both sides of this with respect to
x1:k#1 results in
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from which follows the single-equation recursion for the
single-target Bayes filter:
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PMCs were introduced in 2000 by Pieczynski [6,9] and
have begun to generate a substantial sub-literature.  A
PMC is a joint dynamical system (X1 :k, Y1 :k) whose
evolution is governed by a bivariate Markov transition
density
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(where the right side follows from Bayes' rule) and whose
total bivariate distribution factors as

f!x1:k,y1:k" # f!x1 ,y1"!
i#2

k

f!xi,yi
|xi#1 ,y

i#1",  
(8)

where f(x1,y1) is the distribution at time t1.
PMCs significantly weaken HMC independence

assumptions—see, for example, [5], p. 4487.
Measurement and plant noises need not be uncorrelated,
for example; and measurement noise need not be
uncorrelated frame-to-frame.

A PMC reduces to an HMC if
)|()(),( 11111 xyxyx fff -$ (9)

and if, for k > 1 ,
,)|(),,|( 11 kkkkkk ff xyyxxy $## (10)
).|(),|( 111 ### $ kkkkk ff xxyxx (11)

A target can be tracked even if its state is part of a
PMC but is not itself an HMC.  The recursion formula for
the measurement-updated target state is (see Eq. (12) of
Petetin and Desbouvries’ IEEE Transactions paper [5]):
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From this, the recursion formula for the measurement-
updated PMC state (xk,yk) can be shown to be:
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For completeness, the derivations of Eqs. (12,13) are
given in Section 7.  The two distributions are related by

)|()|()|,( :11:11:1 kkkkkkk fff yxyyyyx -$ ##
(14)

where
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3 Multitarget PMCs (M-PMCs)
An M-PMC generalizes a PMC in the obvious manner.
Let X = {x1,…,xn} be a multitarget state-set with |X| = n

) 0 and let Y = {y1,…,ym} be a multitarget
measurement-set with |Y| = m ) 0 .  An M-HMC is
defined by the factorization

f!X1:k,Y1:k" # f!X1" !
i#2

k

f!Xi|Xi#1" !
i#1

k

f!Yi|Xi"  

(16)
where f(Xi|Xi#1) is the multitarget Markov transition
density and f(Zi|Xi) is the single-sensor, multitarget
likelihood function.  The multitarget analog of Eq. (6) is
the multitarget Bayes filter [1,3,4]:
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where the indicated integral is a set integral.

A multitarget PMC is defined by the factorization

f!X1:k,Y1:k" # f!X1 ,Y1"!
i#2

k

f!Xi,Yi|Xi#1 ,Yi#1",  
(18)

where

f!Xk,Yk |Xk#1 ,Yk#1" # f!Yk |Xk,Xk#1 ,Yk#1"
 f!Xk |Xk#1 ,Yk#1"

 

(19)
is the transition density that specifies M-PMC evolution.

The obvious multitarget analog of the multitarget
recursion of Eq. (12) is
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The obvious multitarget analog of the PMC recursion, Eq.
(13), is

(
###

(
#

######
#

2
-2$

12:111

12:11111

1:1

)|,(
)|,(),|,(

)|,(

kkkk

kkkkkkkk

kkk

XYYXf

XYYXfYXYXf

YYXf

δ

δ (21)

where the integrals are set integrals.  The two distributions
are related by

f!Xk,Yk |Y1:k#1" # f!Yk |Y1:k#1"  f!Xk |Y1:k"  (22)
where
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4 The Petetin-Desbouvries Filter
Because the multitarget Bayes filter of Eq. (17) is
computationally intensive in general, the techniques of
finite-set statistics have been used to derive various
approximate filters—see [1,3,4].  The simplest of these is
the PHD filter, in which the predicted multitarget
distributions f(Xk|Z1 :k#1) are assumed to be approximately
Poisson:

f!Xk |Z1:k#1" # e
#$ D!x k |Z1:k#1"dx k !

x Xk

D!xk |Z1:k#1".  
(24)

The PHD filter recursion (without spawning) is given by
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where
.)|()|()()|( 1:11:1 kkkkkkDkk dZDfpZ xxxyxz ## --$ 2τ (27)

Here, b(xk) is the PHD for target appearances; pS(xk#1)
is the survival probability for a target with state xk#1;
pD(xk) is the probability of detection for a target with state
xk ; κ(zk) is the PHD (intensity function) of the clutter
process; and Zk is the measurement-set at time tk.

Since the PMC recursion equations Eqs. (20,21) are
computationally demanding, a PHD filter-like
approximation of one or both would be even more
desirable.  Petetin and Desbouvries have proposed such a
filter in their IEEE Transactions paper with time-update
equation ([5], Eq. (20))
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and measurement-update equation ([5], Eq. (21))
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where
.)|,()()|( 1:11:1 kkkkkDkk dZDpZ xzxxz ## -$ 2τ (30)

Furthermore, suppose that single-target PMC dynamics are
actually HMC.  That is, assume Eqs. (10,11) and

).|()(),(~
kkkkk fbb xyxyx -$ (31)

Then Petetin and Desbouvries note that Eqs. (28,29)
reduce to Eqs. (25,26) if they are marginalized by
integrating with respect to yk.  For, after marginalization
Eq. (28) becomes
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and, likewise, Eq. (29) becomes !
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where, after some algebra,
)|()|,( 1:1 kkkkk fZD xzzx $#
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in which case Eq. (33) becomes equal to Eq. (26) since
Eq. (30) similarly becomes equal to Eq. (27).

5 M-HMC Theory for PMC Targets
The section is organized as follows:  An HMC formulation
of PMCs (Section 5.1); an M-HMC formulation of M-
PMCs (Section 5.2); and a theoretical M-HMC foundation
for the RFS filtering of PMC targets (Section 5.3).

5.1 An HMC Formulation of PMCs
A PMC can be reformulated as a particular kind of HMC.
Regard the Markov chain (X1 :k, Y1 :k) as an HMC,
observed with a sequence z1 :k of collected measurements.
That is, the state of the PMC system at time tk is  (xk, yk)
and a measurement zk is collected from it. Define the
likelihood function

Lz k !xk,y
k
" # f!zk |xk,y

k
" #  z k !yk

"  (36)
where δz(y) is the Dirac delta function concentrated at
z. Then Eq. (13) is equivalent to a recursive Bayes filter
with time-update equation
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and measurement-update equation
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For, from Eq. (38) we get
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Substitute this into Eq. (37) to get Eq. (13):
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5.2 An M-HMC Formulation of M-PMCs
An M-PMC can be similarly recast as an M-HMC, via the
following analogs of Eqs. (37,38):
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and where
)(),( YYXL ZZ δ$ (43)

and where δZ(Y) is the multi-object Dirac delta function
concentrated at Z , as defined in [1], Eq. (4.15).

5.3 A Theory of Multiple PMC Targets
Eqs. (37,38) provide the crucial insight necessary for a
systematic theoretical foundation for the Petetin-
Desbouvries filter.  A single-sensor, single-target HMC is
a Markov chain X1 :k,  equipped with a transition density
f(xk|xk−1) and a likelihood function f(zk|xk).  A single-
sensor, single-target PMC is a Markov chain (X1 :k, Y1 :k),
equipped with a transition density f(xk,yk|xk−1,yk−1) and a
special Dirac-delta likelihood function f(zk|xk,yk). PMC
theory is extended to the multi-object case using an
analogy with conventional RFS multitarget tracking.
Make the following assumptions :

1) The evolution of a system of PMC pairs is described
by a Markov chain

k:1' of RFSs
i' ,  where any

draw $! i # X! i of $! i is a finite set of PMC pairs.
2) The state-transition of an individual PMC pair

(xk−1,yk−1) is a Bernoulli process.  That is, either
(xk−1,yk−1) disappears with probability 1# pS(xk−1,yk−1)
or else it survives with probability pS(xk−1,yk−1), in
which case its dynamics are described by the PMC
transition function f(xk,yk|xk−1,yk−1).

3) The probability of survival of a PMC pair is that of the
corresponding target: pS(xk−1,yk−1) = pS(xk−1).

4) The state-transition processes of multiple PMC pairs
are statistically independent, in which case the multi-
object transition process is multi-Bernoulli.

5) In any such state transition, new PMC pairs may
spontaneously and independently appear.

6) The measurements collected from a system of PMC
pairs at time tk is described by an RFS &k,  where
any instantiation &k,= Zk of &k is a finite set  of
measurements .

7) The measurement-generation process for an individual
pair (xk,yk) is Bernoulli.  That is,  either (xk,yk)
generates no measurement with probability 1#
pD(xk,yk),  or else it generates a measurement with
probability pD(xk,yk),  in which case the generated
measurement is yk .

8) The probability of detection for a PMC pair is that of
the corresponding target: pD(xk,yk),   = pD(xk).

9) The measurement processes of multiple PMC pairs are
statistically independent, in which case the multi-
object measurement process is multi-Bernoulli.

10) During any measurement collection, spurious clutter
measurements may independently occur.
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The consequence of these assumptions is that a system of
multiple PMC pairs is a multitarget HMC, not a true
multitarget PMC.  Because of Assumptions 1-5, the multi-
object Markov state-transition density for this system is
given by Eq. (7.6) of [1]:
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with corresponding probability generating functional
(p.g.fl.) given by [1], Eq. (7.5)

Ƥ#h! k |X! k#1$ # ƤB#h! k$  !1 # p! S " p! SMh! k
"X! k#1 .  (45)

The consequence of Assumptions 6-10 is that the multi-
object likelihood function is given by Eq. (7.2) of [4]:
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with corresponding p.g.fl. given by [1], Eq. (7.1):
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From Eq. ( 10,11) it follows that the corresponding M-
PMC transition function is f(Yk|Xk) - f(Xk|Xk−1).

It also follows from this discussion that any RFS
filter can, if it is based on standard multitarget tracking
assumptions, be transformed into an M-PMC filter by
simply substituting f(xk,yk|xk−1,yk−1) for f(xk|xk−1) ,
f(zk|xk,yk) for f(zk|xk), pS(xk−1,yk−1) for pS(xk−1),  and
pD(xk,yk)     for pD(xk).  The clutter process remains
unchanged, whereas the birth process must be defined for
PMC pairs (xk,yk) rather than for targets xk.

Furthermore, it follows that—from a strictly rigorous
point of view---the Petetin-Desbouvries approach is
implicitly an H-PMC constructed from single-target
PMCs.  A true M-PMC would require the construction of
an M-PMC transition function f(Xk,Yk|Xk−1,Yk−1).
Preferably, in the M-HMC special case this transition
function should reduce to f(Xk|Xk−1)-f(Yk|Xk), where
f(Yk|Xk)   and f(Xk|Xk−1) are, respectively, the standard
multitarget likelihood function and standard multitarget
transition density.  This was the subject of the recent
conference paper [2].

6 Example :  A PMC-CPHD Filter
The section is organized as follows:  The PMC-CPHD
filter time-update (Section 6.1), the PMC-CPHD filter
measurement-update (Section 6.2), and multitarget state
estimation (Section 6.3).

6.1 Time-Update
Suppose that we are given: (1) the spatial distribution

s!!xk#1 |Z1:k#1" ;
the expected number of PMC pairs

N! k#1 ;
and the distribution

p! !n! k#1 |Z1:k#1"
on the number

n! k#1
of PMC pairs (i.e., cardinality distribution) or,
equivalently, its probability generating function (p.g.f.)

Ƥ!x! k#1 |Z1:k#1" .
Given this, the time-updated PHD is given by
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The corresponding spatial distribution is
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The predicted cardinality distribution and its
corresponding p.g.f. are given by
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p! !n! k |n! k#1"
 p! !n! k#1 |Z1:k#1"

 

 

(51)
where

%! k # $ p! S!xk#1 ,y
k#1"  s!!xk#1 ,y

k#1 |Z1:k#1"xk#1dy
k#1  

(52)
and where

p! !n! k |n! k#1" # "
i#0

n! k

pB!n! k # i"  Cn! k#1,i  %! k
i !1 # %! k"n! k#1#i.  

(53)

6.2 Measurement- Update
Suppose that we have:  (1) a new measurement-set

Zk # %z1 , . . . ,zm k &
with |Zk| = mk ; the predicted spatial distribution

s!!xk,y
k
|Z1:k#1" ;

and the predicted cardinality distribution
p! !n! k |Z1:k#1"

or, equivalently, its p.g.f.
Ƥ!x! k |Z1:k#1"

(which will be abbreviated as
Ƥ!x! k" ).
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Let

N! k # Ƥ !1 "!1|Z1:k#1".  (55)

Given this, the predicted PHD is given by the PHD is
given by

)|,(),()|,( 1:1:1 #-$ kkkkkZkkk ZDLZD
k

yxyxyx    

(56)
where

L! Zk !xk,y
k
"

# 1
Nk

 !1 # p! D!xk,y
k
""  ND

L Zk

""
j#1
m k

p! D!x k ,y k" L! zj!x"
ck!z j"  D

LZk !zj"

 

(57)
where

ND

L Zk

#

"
i#0
m k !mk # i"!  p!!mk # i"
 " i!Zk"  Ƥ !i"1"!$k"

"
l#0
m k !mk # l"!  p!!mk # l"

 " l!Zk"  Ƥ !l"!$k"

 

(58)
and

D

LZk !zj"

#

"
i#0
m k#1!mk # i # 1"!  p!!mk # i # 1"

 " i!Zk # %zj&"  Ƥ !i"1"!$k"
"

l#0
m k !mk # l"!  p!!mk # l"

 " l!Zk"  Ƥ !l"!$k"

 

(59)
and where

kkkkkkDk ddsp yxyxyx ),()),(1(   -#$ 2φ (60)
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and

" i!Zk # %zj&"

# "m k#1,i

# k!z 1"
ck!z 1" , . . . , # k!z j"

ck"1!z j" ,

. . . , # k!z mk "
ck!z mk "

;

 

(62)
and where

# k!z" # $ p! D!xk,z"  s!!xk,z"dxk;  
(63)

and where
y1 , . . . ,yj, . . . ,ym

indicates that yj has been removed from the list y1,…, ym.
Finally, the measurement-updated cardinality

distribution and p.g.f. are, respectively,

p! !n! k |Z1:k" # &!Zk !n! k"  p! !n! k |Z1:k#1"
"

l%0 &!Zk !l"  p! !l|Z1:k#1"  
(64)

and

Ƥ!x! k"

#

"
j#0
m k x! k

j  !mk # j"!  p!!mk # j"
 Ƥ !j"!x! k  $k"  " j!Zk "

"
i#0
m k !mk # i"!  p!!mk # i"
 Ƥ !i"!$k"  " i!Zk "

 

(65)
where

&!Zk"1!n! k"

#

"
j#0
min%m k ,n! k&!mk # j"!  p!!mk # j"

 j!  Cn! k ,j  $k

n#j  " j!Zk"
"

l#0
m k !mk # l"!  p!!mk # l"

 " l!Zk"  Ƥ !l"!$k"

.

 

(66)

6.3 PMC-CPHD Filter: State Estimation
State estimation for he PMC-CPHD filter is accomplished
in the same manner as the “classical” CPHD filter.

7 Mathematical Derivations
From Bayes' rule we know that

f!xk,y
k
|y1:k#1" # f!xk |y1:k"  f!y

k
|y1:k#1"  (67)

and so

)|(
)|,(

)|(
1:1

1:1
:1

#
#$
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kkk

kk
f

f
f

yy
yyx

yx (68)

.
)|,(
)|,(

1:1

1:1
(

#
(

#
2$

kkkk

kkk

df

f

xyyx
yyx (69)

However,

f!xk,y
k
|y1:k#1" # $ f!xk,y

k
|xk#1 ,y

k#1"
 f!xk#1 |y1:k#1"dxk#1

 

(70)
For,
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from which Eq. (70) and thus Eq. (12) follow.
We are to prove Eq. (13).  For from Eq. (70) we get
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which results in Eq. (13):
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8 Conclusion
The recent conference paper [2] initiated a study of
random finite set (RFS) filters for multitarget applications
that are subject to relaxed independence assumptions.  The
main object of study is the multitarget pairwise Markov

chain (M-PMC) model described in Section 3.  The M-
PMC model addresses situations in which the current
multitarget state-set can depend on the previous
multitarget measurement-set, and in which the current
multitarget measurement-set can depend the previous
multitarget measurement-set and on both the current and
previous multitarget state-sets:

,)|(),|( 111 ### * kkkkk YXfYXXf (79)
).|(),,|( 11 kkkkkk XYfYXXYf *## (80)

This paper addressed a simpler problem:  multitarget
hidden Markov chain (M-HMC) models for targets that
have PMC dynamics.  A theoretical foundation for such
models was developed.  It was shown that this foundation
allows one to construct PMC analogs of any RFS filter
that is based on the standard multitarget motion and
measurement models.  In particular, it was shown that the
Petetin-Desbouvries PMC-PHD filter [5] arises as a

special case.  As an illustration, a PMC-CPHD filter
generalization of that filter was described.  Thus it is now
possible to track multiple targets whose dynamics are not
necessary govered by restrictive HMC independence
assumptions.  Petetin and Desbouvries have given
concrete application and implementation examples of how
this can be accomplished [5].

It should be emphasized that the line of investigation
in [2] has merely initiated the study of M-PMC systems.
Many questions remain.  For example, the definition of the
M-PMC transition function f(Xk,Yk|Xk#1,Yk#1) in [2] was
chosen in part because it leads to potentially tractable
formulas.  A more intuitive understanding of physically
reasonable M-PMC transition functions is required.
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