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Abstract—Fundamental to any state estimation problem is the
concept of estimation error. In both autonomous robotics and
tracking research, the ability to assess the performance of robotic
mapping and target tracking algorithms is of crucial importance.
This article focusses on metrics for the automatic evaluation
of target tracking and feature map estimation algorithms, in
the presence of both detection and spatial uncertainty. In such
realistic cases, many metrics fail to provide a meaningful and
intuitive assessment of robotic map estimates. Recently the
Optimal Sub-pattern Assignment (OSPA) metric provided a
solution, as it was shown to provide more meaningful assessments
of target tracking algorithm performance than its predecessors.
This article will demonstrate that the OSPA metric still suffers
various disadvantages under realistic mapping scenarios. These
include its saturation to a limiting value, irrespective of the
cardinality error of different estimators, and its inability to
distinguish between repetitions of balanced estimates, in which
single ground truth features are estimated with multiple false
alarms. The Cardinalized Optimal Linear Assignment (COLA)
metric is therefore introduced as a complement to the OSPA
metric, and their combination is analysed in order to gauge
target tracking and map estimation errors in an intuitive and
meaningful manner.

I. INTRODUCTION

Solutions to robotic mapping and Simultaneous Localization

and Mapping (SLAM), in which usually the location of an un-

known number of features should be estimated, are numerous,

offering various degrees of performance [1]–[4]. Irrespective

of the estimation methods used, while clear concepts exist for

quantifying the error in the estimated pose or trajectory of a

robotic vehicle [5] and/or a subset of the estimated feature

locations [6], the absolute difference between all estimated

and all ground-truth features in the map is rarely jointly

considered, even though in SLAM, this is of equal importance

to the vehicle trajectory estimate.

The primary difficulty in mathematically defining track or

map estimation error is caused by the differences between the

estimated and true number of tracks/features, and the need

to satisfy the four metric axioms [7]1. To demonstrate the

problem of precisely quantifying feature-based mapping error,

1The four metric axioms can be defined as follows. Let X be an arbitrary,
non-empty set, containing the vectors x, y and z. Then the function d is
a metric iff: 1) d(x,y) >= 0, for all x,y ∈ X ; 2) d(x,y) = 0 iff
x = y, x ∈ X (identity axiom); 3) d(x,y) = d(y,x), for all x,y ∈ X
(symmetry axiom); 4) d(x,y) ≤ d(x, z) + d(y, z), for all x,y, z ∈ X
(triangle inequality axiom).

Figure 4 shows posterior map estimates from two separate

feature mapping/SLAM filters. The true feature map, in each

figure is shown as blue stars and the estimated map from

algorithm 1 (left figure) as red spatial uncertainty ellipsis and

that from algorithm 2 as green ellipsis (right figure). The

natural question which arises is: “Which estimate is closer

to the true map?” Visual intuition is difficult in such a case as

this, due to the combination of missed detections, false alarms

and spatial errors in both estimated feature maps. An accepted

metric to answer this fundamental question is lacking in the

mobile robotics community.

It will be shown in this article, that multi-object metrics,

which consider both multi-target state estimation cardinality

as well as spatial errors and which obey the metric axioms,

can gauge robotic maps in an intuitive manner. A new method

for comparing maps, called the Cardinalized Optimal Linear

Assignment (COLA) metric, is introduced, and compared

to its Optimal Sub-pattern Assignment (OSPA) counterpart

[7]. In particular, various mathematical properties of each

metric, and their consequences on their “meaningful physical

interpretations” will be demonstrated.

In the robotics literature, various articles have proposed

techniques to assess the quality of robotic maps in various

ways [8], [9]. Recent work in SLAM and robotic map esti-

mation has suggested that a collection of map features can be

modelled as a finite set, rather than a vector [3], [4]. Indeed

the mathematical definitions of the four metric axioms apply

to a set of vectors and it will be demonstrated in this article

that if a ground truth set-based map Mk and its set-based

estimate M̂k, which vary with discrete time k, are modelled

as finite sets of feature location vectors, then a mathematically

consistent notion of estimation error is possible, since the

‘distance’, or error between sets, is a well understood concept.

The work by Schuhmacher et al [7] examined such met-

rics including the Hausdorff distance, Optimal Mass Transfer

(OMAT) [10] and introduced the OSPA distance [7], which

determine the “distance” between sets.

The philosophy behind the OSPA metric is continued in

this article, in terms of the newly proposed COLA set-based

metric.

Sections II and III overview current set-based metrics and

define the COLA metric. Sections IV and V analyse the
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performance of various metrics under different simulated and

real world mapping scenarios.

II. MAP SET DEFINITIONS

Modelling a robotic feature map as a set Mk provides a

general model, since the vectors within each set can contain

any (spatial, color and/or other) information of relevance to

the type of feature to be estimated. Further, the order in which

these features are estimated, in terms of gauging overall map

quality, is irrelevant. Throughout this article, the ground truth

map set Mk is considered to contain mk vectors m
i
k, 1 ≤

i ≤ mk. For ease of notation and explanation, and without

loss of generality, m will be referred to as a spatial variable

and the time index k is now dropped. Therefore the ground-

truth map M = {m1,m2, . . . ,mm} where for spatial maps,

M ∈ R
2 or R

3 as appropriate. Similarly, the estimated map

M̂ is considered to contain m̂ vectors modelling the spatial

location of map objects - i.e. M̂ = {m̂1, m̂2, . . . , m̂m̂} where

M̂ ∈ R
2 or R

3 as appropriate, with spatial variable m̂. Note

that m̂ is itself an estimate of m and therefore, in general,

m̂ 6= m (|M̂| 6= |M|).

III. THE OSPA AND COLA METRICS

A. The Optimal Sub-Pattern Assignment (OSPA) metric

In 2008, Schuhmacher et al [7] presented a metric for gaug-

ing multi-object state estimates [11]. This is also a derivative

of the Wasserstein construction. [7] demonstrated that OSPA

obeys the metric axioms and that it improves most of the

problems of the OMAT metric in that it is well defined when

one of the sets is empty and overcomes the inconsistencies in

penalising cardinality error and its geometric dependence.

1) Definition of the OSPA Metric: The OSPA metric

dpOSPA(M,M̂) with power p and cut-off parameter c, for

m̂ > m, is defined as:

dpOSPA(M,M̂) =

(
1

m̂
min
σ

m̂∑

i=1

d(c)(mi, m̂σ(i))p

)1/p

(1)

=

(
1

m̂

(
min
σ

m∑

i=1

d(c)(mi, m̂σ(i))p + cp(m̂−m)

))1/p

(2)

where σ is a permutation of the set {1, . . . ,m} which min-

imizes

(
m∑
i=1

d(c)(mi, m̂σ(i))p
)

, 1 ≤ p < ∞ and the cut-

off parameter c > 0. The Hungarian method can be used to

determine the optimal assignment σ. If both sets are empty,

m = m̂ = 0, dpOSPA(M,M̂) = 0. For m ≥ m̂, the metric

is defined as dpOSPA(M̂,M). The distance d(c)(mi, m̂σ(i)) is

defined as

d(c)(mi, m̂σ(i)) = min(c, d(mi, m̂σ(i))) (3)

where d(mi, m̂σ(i)) is any metric distance (e.g. Euclidean,

Mahalanobis, Hellinger) between m
i, m̂σ(i).

2) Intuitive Explanation of the OSPA Metric: For m̂ > m

and p = 1, the first term of the RHS of (2), determines individ-

ual assignments between all m of the feature location vectors

within M and a subset of dimension m of the feature vectors

within M̂. Due to (3), each assignment is given a value equal

to its (possibly statistical) distance up to a maximum value

of c (statistical) distance units. The remaining m̂−m features

in M̂ which were not assigned, constitute a dimensionality

error (possible false alarms and/or missed detections). Each

of these is penalised with the maximal distance error c, hence

yielding the RHS residual error c(m̂ − m) in (2). To comply

with other metrics (L2 norm etc.) the assigned distance values

can be raised to the general power p. Hence the OSPA metric

yields a measure of the difference between M̂ and M in

units of distance - e.g. meters. It can be seen from (2) and

(3) that dpOSPA(M,M̂) has minimum value zero and saturates

to a maximum value c for all M and M̂. The effect of, and

concepts for selecting c and p are discussed in detail in [7].

B. Cardinalized Optimal Linear Assignment (COLA) metric

1) Definition of the COLA Metric: As a complement to the

OSPA metric, this article introduces the COLA metric, which

is defined as

dpCOLA(M,M̂) =

(
min
σ

m̂∑

i=1

(
d(c)(mi, m̂σ(i))

c

)p
)1/p

(4)

=

(
min
σ

m∑

i=1

(
d(c)(mi, m̂σ(i))

c

)p

+ (m̂−m)

)1/p

, (5)

where, d(c)(mi, m̂σ(i)) is defined in (3), again with cut-

off parameter c. The assignment σ is the same as that for

the OSPA metric. For m ≥ m̂, the metric is defined as

dpCOLA(M̂,M). From (2) and (5) it can be seen that

dpCOLA(M,M̂) ≡

(
m1/p

c

)
dpOSPA(M,M̂). (6)

2) Intuitive Explanation of the COLA Metric: Whereas

the OSPA metric has the units of the localization error (i.e.

distance), the COLA metric has the units of dimensionality

error (i.e. no units). Intuitively, in the OSPA metric, when

the (statistical) distance between feature i and its assigned

feature j reaches a maximum value (c), feature i becomes a

cardinality error, contributing one more fixed distance error

cp. In the COLA metric, when the distance between an

unassigned feature i and another feature j decreases to c it

changes from a cardinality error to a fractional cardinality

error
(
d(c)(mi, m̂σ(i))/c

)p
. Although the difference between

the OSPA and COLA metrics may seem trivial, Sections IV

and V will demonstrate significant differences in the intuitive

behavior of the COLA metric over its OSPA counterpart, when

evaluating feature maps.

In contrast to the OSPA metric, it can be seen from (5) and

(3) that dpCOLA(M,M̂) has minimum value zero and maximum

value (m̂)
1/p

if m̂ > m or (m)
1/p

otherwise. In the case of the
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COLA metric, the question of how to select parameters c and

p, and their physical interpretation, must also be addressed.

The effect of p: In a similar manner to the OSPA metric [7],

as p increases, the weighting applied to smaller localization

errors diminishes. Therefore the COLA metric also penalises

higher localization errors for higher values of p. Also, based

on the COLA metric form given in (4), it can be shown that

for the same value of c, the COLA metric is also ordered with

respect to p - i.e.

dp1

COLA(M,M̂, c) ≤ dp2

COLA(M,M̂, c) for 1 ≤ p1 < p2 ≤ ∞.
(7)

The effect of c: Analysis of the COLA metric form in

(5) shows that as c → ∞ the COLA metric becomes only

sensitive to cardinality errors. Therefore, as in the OSPA

metric, increasing c increases the penalisation of cardinality

errors. However in contrast to the OSPA metric, from (5) it is

evident that

dpCOLA(M,M̂, c1) ≥ dpCOLA(M,M̂, c2) for 1 ≤ c1 < c2 ≤ ∞.
(8)

c determines how the COLA metric penalises cardinality

errors. It is the (possibly statistical) distance value beyond

which it is assumed that an estimated feature no longer

corresponds to a ground truth feature, so that it then remains

unassigned. In a manner similar to the OSPA metric [7], c can

be chosen based on “what distance (how many meters) the

designer wants to penalise a false or missing estimate”, which

in any application should significantly aid its practical choice.

The appendix shows that dpCOLA(M,M̂) is a metric.

IV. ANALYSES OF EACH METRICS’ INTERPRETATION

The natural, physical interpretation of the Hausdorff, OMAT

and OSPA metrics has been analysed and compared in [7].

Therefore, in this section, similar analyses of these metrics,

which focus on the OSPA and COLA metrics will be carried

out for particular and general cases of the maps M and M̂, in

order to highlight the differences between them. In particular,

four comparison scenarios will be addressed in which at

least one of the maps is empty, contains a single feature,

contains multiple features which are balanced2 and imbalanced

with respect to the other map, and contains outliers. The

results will demonstrate the COLA metric’s ability to provide

meaningful error estimates as cardinality errors increase and

when repetitions of balanced estimates occur.

To simplify the ensuing analyses, in the examples shown

in this section, d(mi, m̂σ(i)) will be the Euclidean distance

metric. To demonstrate the generality of the COLA metric,

actual SLAM performance evaluations in Section V will apply

the COLA and OSPA metrics, in which d(mi, m̂σ(i)) is the

Mahalanobis distance, allowing the incorporation of estimated

feature spatial uncertainties.

2The terms balanced and imbalanced, with respect to maps, will be
explained in Sections IV-C1 and IV-C2.

A. Non Empty Set vs Empty Set

Consider a ground truth map M = ∅ and its estimate M̂ =
{m̂1, . . . , m̂m} or vice versa. The Euclidean, Hausdorff and

OMAT metrics are all undefined in this case, since both sets

must be non-empty. Meanwhile, the OSPA metric is given by

dpOSPA(M,M̂) =

(
1

m̂
cp(m̂− 0)

)1/p

= c. (9)

In this case, the COLA metric yields

dpCOLA(M,M̂) = (m̂− 0)
1/p

= m̂1/p. (10)

Both metrics demonstrate a desirable asset since a metric

should be defined when one of the sets is empty. However,

the COLA metric can be considered to provide a more

intuitive result. This is because, irrespective of the difference

in cardinality, the OSPA metric gives the same score (c) and is

insensitive to this number, whereas the COLA metric increases

with m̂. For p = 1, the COLA metric increases linearly with

m which is clearly the true value of the cardinality error in

this case.

B. A Single Feature Ground Truth Map with Multiple Esti-

mates

Consider the ground truth map M = {m} and its estimates

M̂ = {m̂1, . . . , m̂m̂}, which could correspond to an estimator

yielding multiple false alarms.

The Hausdorff metric in this case yields

dH(M,M̂) = min
m̂

j∈M̂

d(m, m̂j), (11)

i.e. the Hausdorff metric chooses some m̂
j ∈ M̂ which

minimizes the Euclidean distance d(m, m̂j).
If all distances d(mi, m̂j) = d0 > 0, for 1 ≤ j ≤ m̂, where

d0 is a constant, the Hausdorff and OMAT metrics both equal

d0. This implies that although both the Hausdorff and OMAT

metrics are sensitive to the spatial error between the ground

truth and the estimated landmarks, which is d0 for each m̂
j ,

they are completely insensitive to the number of features in

M̂ and hence to the cardinality error between M and M̂
which is m̂−1. This is evident in Figures 1(a) to (d) in which

the number of estimated feature maps include an increasing

number of false alarms.

From (2), for the same scenario, assuming that the estimate

m̂
l is the closest point to m - i.e.

d(c)(m, m̂l) < d(c)(m, m̂i) ∀ i 6= l, (12)

the OSPA metric gives the following result

dpOSPA(M,M̂) =

(
1

m̂

(
d(c)(m, m̂l)p + cp(m̂− 1)

))1/p

.

(13)

The COLA metric then gives the following result

dpCOLA(M,M̂) =

((
d(c)(m, m̂l)

c

)p

+ (m̂− 1)

)1/p

. (14)
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Fig. 1: A comparison of the Hausdorff, OMAT, OSPA and COLA
metrics. The blue stars represent the ground truth map and the red
crosses its estimate. Scenarios (b) to (d) show an increasing number
of false alarms. The distance between the ground truth landmark and
every estimate is d = 50. The parameters used were c = 200, p = 1.

In contrast to both the Hausdorff and OMAT metrics, both

the OSPA and COLA metrics depend on m̂ and they penalise

such errors in an intuitive manner since both increase with

increasing m̂. This is verified in Figure 1.

C. Multiple Ground Truth and Estimated Features

[7] demonstrated the non-intuitive behavior of the Haus-

dorff and OMAT metrics when multiple ground truth and

estimated feature scenarios exist in the form of balanced

and imbalanced scenarios, which are defined as follows. The

discussions in this section will therefore focus on the OSPA

and COLA metrics only.

1) Balanced maps: These maps have the following proper-

ties3:

1) Each feature in the ground truth map has in its proximity

the same number of estimated (possibly > 1) features.

2) The distance between each ground truth feature and

its nearest feature(s) in the estimated set is the same,

referred to as d.

3) The distances between the elements of the ground truth

map are larger than d, and referred to as d′.

Consider a ground truth map M = {m1, . . . ,mm} and its

balanced estimated map M̂ = {m̂1,1, . . . , m̂1,q, . . . , m̂m,q}
(i.e. each feature in M appears to be associated with q
estimates) as follows:

d(c)(mi, m̂σ(i),l) = d ≤ c, 1 ≤ i ≤ m, 1 ≤ l ≤ q

d(c)(mi, m̂j) > d ∀ i 6= j (15)

This means that every ground truth landmark has q estimates

at distances d. Then, the OSPA distance is given by

dbalanced
OSPA (M,M̂)p =

(
1

q
(dp + cp(q − 1))

)1/p

(16)

This means that the OSPA metric performs the same as the

case when the ground truth has one element, which is evident

3Note that due to the symmetry property of the metrics, the ensuing
arguments also apply if the ground-truth and estimated map sets are swapped.

by substituting m̂ = q into (13). In fact if the scenarios in

Figures 2(a) and 1(c) and Figures 2(c) and 1(d) are compared,

the OSPA metric evaluation is the same.
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Fig. 2: Four scenarios highlighting the performance of OSPA when
cardinality errors exists. The distance between the center of each
ground truth landmark and its neighboring estimates is d = 50. The
parameters used in these calculations c = 200, p = 1. |M| indicates

the cardinality of the ground truth set M and |M̂| the cardinality

of its estimated set M̂.

In this balanced scenario, the COLA metric yields

dbalanced
COLA (M,M̂)p =

(
m

((
d

c

)p

+ (q − 1)

))1/p

(17)

Note that this result is not the same as the single ground truth

feature case, which from 14, with m̂ = q yields

dbalanced
COLA (M,M̂)p =

((
d

c

)p

+ (q − 1)

)1/p

(18)

Note that the multi feature balanced map result (17) is m1/p

times larger than the single feature case.

The scenarios in Figures 2(a) and 2(c) contain repetitions

of the scenarios in Figures 1(c) and 1(d) respectively, and the

OSPA metric demonstrates its ability to determine the average

error as it gauges each equally. In contrast, the extra cardinality

(false alarm) errors in these scenarios are exactly reflected by

the COLA metric for p = 1. This demonstrates the COLA

metric’s strict penalisation of cardinality errors.

2) Imbalanced maps: Imbalanced maps have the same

properties as balanced maps except for property 1 in Section

IV-C1, which becomes:

1) At least one feature in the ground truth map has in its

proximity a different number of estimated features, than

the others.

Now consider the OSPA and COLA metrics’ performances

in a more general imbalanced case with ground truth map

M = {m1, . . . ,mm} and estimated map

M̂ = {m̂1,1, . . . , m̂1,q, . . . , m̂2,1, . . . , m̂2,q, (19)

. . . , m̂m−1,1, . . . m̂m−1,q, m̂m,1, . . . , m̂m,q−s}
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(i.e. the ground truth landmark m
m has in its neighborhood

q − s estimates. The subset M′ = {m1, . . . ,mm−1} ∈ M is

balanced and has in its neighborhood q estimates), where:

d(c)(mi, m̂σ(i),l) = d ≤ c, 1 ≤ i ≤ m− 1, 1 ≤ l ≤ q
d(c)(mm, m̂σ(m),l) = c, 1 ≤ l ≤ q − s
d(c)(mi,mj) > d, ∀ i 6= j.

(20)

In this case

dimbalanced
OSPA (M,M̂)p =

(
1

qm− s
(mdp + cp(m(q − 1)− s))

)1/p

(21)

and comparing (16) and (21) gives

dbalanced
OSPA (M,M̂)p ≥ dimbalanced

OSPA (M,M̂)p, s ≥ 0,

dimbalanced
OSPA (M,M̂)p ≥ dbalanced

OSPA (M,M̂)p, s < 0 (22)

meaning that the OSPA metric penalises false alarms in an

intuitive manner. This can be seen in Figure 2 since the

estimate in Figure (2b) is better than that of Figure (2a)

because it has less cardinality error but the same spatial error.

The general imbalanced scenario described in (19) yields a

COLA metric value

dimbalanced
COLA (M,M̂)p =

(
m

(
d

c

)p

+ (m(q − 1)− s)

)1/p

.

(23)

If this is compared with dbalanced
COLA (M,M̂)p in (17), it can

also be seen that dbalanced
COLA (M,M̂)p > dimbalanced

COLA (M,M̂)p

for s > 0 and vice versa for s < 0, which again com-

plies with intuition. It should also be noted that, true to

its nature of having units of cardinality error, for p = 1,

dbalanced
COLA (M,M̂)p−dimbalanced

COLA (M,M̂)p = s, yielding the exact

dimensionality error between the sets.

D. Outliers

Consider an estimated map with only one outlier - i.e. M =
{m1, . . . ,mm} and M̂ = {m̂1, . . . , m̂m+1}, and assume that

every single ground truth landmark has a perfect estimate:

d(mi, m̂i) = 0 for 1 ≤ i ≤ m (24)

d(mi, m̂j) > c for i 6= j (25)

The Hausdorff distance in this case is:

dH(M,M̂) = min
m

i∈M

d(mi, m̂m+1) (26)

where it can be seen that if a large distance exists between

m̂
m+1 and its its closest feature m ∈ M, the Hausdorff

metric yields a large value, even if m, the number of perfectly

matched estimates and ground truth features, is large.

The OMAT metric in this case is:

dpOMAT(M,M̂) =

(
m∑

i=1

d(mi, m̂m+1)p

m(m+ 1)

)1/p

. (27)

From a physical stand point, the OMAT metric’s performance

is more desirable since if m → ∞, dpOMAT(M,M̂) → 0. It

can also be seen from Equation 27 however, that when m = 0,

OMAT is undefined.

In this same scenario, from (2), the OSPA metric is equiv-

alent to a distance error as follows

d
(c)
OSPA(M,M̂)p = c

(
1

m+ 1

)1/p

. (28)

As in the case of the OMAT metric, if m → ∞ (large numbers

of perfect estimates), the OSPA metric d
(c)
OSPA(M,M̂)p → 0

distance units, again giving an intuitive result.

In the case of the COLA metric,

d
(c)
COLA(M,M̂)p = 1, (29)

which, since this metric yields cardinality, as opposed to

average distance units, is intuitive. In this case there is a single

outlier, and the COLA metric correctly reports it. It should be

noted here that the COLA metric is somewhat unforgiving

to cardinality errors. For example, if a mapping algorithm

estimates a large number of perfectly located estimates, with

just one false alarm, the COLA metric always penalises the

algorithm, even though as m → ∞ the algorithm can be argued

to be approaching perfection. In this sense the OSPA metric

behaves more intuitively.

V. RESULTS - EVALUATING METRIC PERFORMANCE WITH

REAL SLAM MAPS

In this section the performance of the Hausdorff, OMAT,

OSPA and COLA metrics will be analysed by comparing their

ability to score real estimated SLAM results in a physically

meaningful manner.

Figure 3 shows the SLAM trajectory estimates from two

different SLAM algorithms4, which were designed to estimate

vehicle trajectories and maps corresponding to the x, y location

of tree trunks. Each algorithm is referred to as “SLAM

(a) SLAM Alg. 1. (b) SLAM Alg. 2.
Fig. 3: Ground truth and estimated trajectories from SLAM algo-
rithms 1 (a) and 2 (b). Each result also shows the ground truth
feature locations (stars) superimposed onto a satellite image of the
park in which the experiments were carried out.

Alg. 1” and “SLAM Alg. 2” respectively and each result is

superimposed onto a satellite image of the area5 to show the

tree coverage and trunk locations. The ground truth trajectories

4The estimated SLAM solutions are based on Multi-Hypothesis (MH)-
FastSLAM [12] and Rao-Blackwellized (RB)-PHD-SLAM [3].

5The experiments were carried out in Parque O’Higgins, Santiago, Chile.
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(blue lines) were obtained via manual scan-matching, and the

red lines represent the estimated trajectories. The blue stars

represent the ground truth features, centered at their locations,

again obtained through independent, manual scan matching

procedures. Although the differences in the trajectories appear

minor, it will be shown that their corresponding map estimates

are significantly different.

To highlight the estimated maps, and their spatial un-

certainties, the red and green ellipses in the left and right

plots respectively of Figure 4, correspond to the means and

covariances for each estimated feature. Each covariance ellipse

is calculated from the eigenvalues and eigenvectors of the error

covariance matrices corresponding to each estimated feature.

The ellipses shown correspond to “5-Sigma ellipses”, which

from 2 degree-of-freedom Chi-squared tables, correspond to

a probability mass within each ellipse of 0.999996. Hence,

d(c)(mi, m̂σ(i)) in (2) can be the Mahalanobis metric such

that

d(c)(mi, m̂σ(i)) = (30)

min

(
c,

√
(mi − m̂σ(i))T (Pi)

−1
(mi − m̂σ(i))

)

where c = 5 and P
i is the sum of the error covariance

sub-matrices corresponding to estimated feature m̂
σ(i) and

ground truth feature m
i. In this analysis it is assumed that

the error associated with all ground truth features is zero6

and that the estimated feature covariance values are available

from the SLAM estimator. In each figure, the Hausdorff,

OMAT, OSPA, COLA and the estimated cardinality errors are

provided. In all of the experiments, p = 2, which according

to [7] yields smooth distance curves, and is commonly used

in other metrics, such as the L2 distance.

A. Analyses of the Complete SLAM Experiments

1) Performance of the Hausdorff Metric: The max-min

function of the Hausdorff metric is represented in each figure

by the dashed line and circular regions. The dashed line

connects estimated and ground truth feature locations which

satisfy the max-min function and hence give the Hausdorff

distance dH . It is evident that if the number of estimated

features (possibly false alarms) increased outside of the circle

in Figure 4 (left), they have no affect on the value of the

Hausdorff metric. Conversely, if there were more ground truth

features (stars) outside the circle in Figure 4 (right), possibly

indicating more missed detections, these would also be ignored

by the metric. The Hausdorff metric is essentially insensitive

to cardinality errors outside of these circles.

2) Subdividing the Maps for Assessing Metric Performance:

Assessing the intuitive performance of the map metrics is

clearly a difficult task based on the complete map estimates

of SLAM Alg. 1 and SLAM Alg. 2 in Figure 4, due to

complex combinations of both spatial and cardinality feature

6In the target tracking literature, [13] applied the OSPA metric based on a
Hellinger distance metric, in which the ground truth target covariances were
replaced with their Cramer Rao lower bound values.

errors. Therefore, to simplify the analysis, Figure 5 shows

both ground truth and estimated maps divided into cells (sub-

maps), based on a Voronoi partitioning of the ground truth

map. This provides a means of isolating single ground truth

features and analysing the corresponding estimates in that

cell. Considering ground truth and estimated maps in single

and multiple Voronoi cells, rather than the complete maps,

simplifies the assessment of the metrics in terms of their

intuitive behavior.

B. Analyses of the Sub-maps

Based on the sub-map corresponding to the orange shaded

cell in Figure 5, Figure 6 shows the ground truth and estimated

maps for cut-off parameter c = 1. Each metric’s value is given

Fig. 6: Metric performance for the single orange shaded cell of
Figure 5 for OSPA and COLA metric values c = 1 and p = 2.

in the top right corner, along with the cardinality error Ecard

between the estimated and ground truth maps and the values

of c and p used in both the COLA and OSPA metrics. In

Figure 6 (c = 1), from (30) no features are gated (assigned)

and arguably, intuitively SLAM Alg. 2 has produced a better

map estimate than SLAM Alg. 1, since the spatial error

between the ground truth features and their closest estimates

are approximately the same, but SLAM Alg. 2 yields one less

cardinality error. Note that the only metric which correctly

reports this is the COLA metric. The OSPA metric judges

each sub-map to be of the same quality, as it saturates to its

limit (c = 1) for both SLAM Algs. 1 and 2.

Due to its max-min function, the Hausdorff metric contra-

dicts intuition as it assigns a lower value to SLAM Alg. 1,

again clarified by the dashed lines and circles in the figure.

The OMAT metric also provides a non-intuitive result,

penalising SLAM Alg. 2 (5.667) more than SLAM Alg, 1

(4.681), due to the nature of its fractional assignments, as

explained in Section IV-B. Note that the OMAT metric made

assignments only within the considered cell.

Note that if c is increased to 3, as shown in Figure 7, one

of the feature estimates in each map is now assigned to a

ground truth feature by both the OSPA and COLA metrics.

Therefore, the OSPA metric now gauges SLAM Alg. 2 to

have a superior mapping performance than SLAM Alg. 1, in
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Fig. 4: The ground truth (blue stars) and estimated maps produced by SLAM Alg. 1 (Left: red “5-sigma” confidence interval ellipsis) and
SLAM Alg. 2 (Right: green “5-sigma” confidence interval ellipsis).

Fig. 5: A Voronoi partitioning of the maps with respect to the ground truth features, allows individual cells and their combinations to be
considered for comparing intuitive map estimation performance with that of the metrics.

line with intuition. The COLA metric agrees with this result.

However, in contrast to the OSPA metric, the COLA metric

continues to decrease in each case, such that if the estimates

from SLAM Alg. 1 in left sides of Figures 6 and 7 are

compared, the estimates in Figure 7 are favored. The same

applies to the estimates of SLAM Alg. 2 in the right sides of

the figures. Importantly, in contrast to the OSPA metric, the

COLA metric continues to decrease as c increases (Equation

(8)) and an estimated feature changes status from ungated to

gated, arguably following intuition.

Figures 8 and 9 demonstrate the metrics’ performances in

the combination of the yellow and orange Voronoi partitions

of Figure 5, for COLA and OSPA metric parameters c = 1
and c = 6 respectively. Note again in Figure 8 that, contrary

to intuition, the Hausdorff metric gauges SLAM Alg. 1 to

be superior in its map estimation ability than SLAM Alg. 2,

despite the larger cardinality error committed by SLAM Alg.

1, and the fact that no features are gated. As expected, the

OSPA, non-intuitively gauges both maps equally, whereas the

COLA metric, and in this case the OMAT metric, favor SLAM

Alg. 2.

In Figure 9, c is increased to 6, reducing the Mahalanobis
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Fig. 7: Metric performance for the single orange shaded cell of
Figure 5 for OSPA and COLA metric values c = 3 and p = 2.

Fig. 8: Metric performance for the yellow and orange cells of Figure
5, for OSPA and COLA metric values c = 1 and p = 2.

distance between 3 of the estimated features and ground truth.

This allows them to gate and the OSPA metric therefore

reduces its value below c = 6. Once again however, the COLA

metric demonstrates its continuity over the OSPA metric as it

intuitively lowers its values, when compared with Figure 8,

favoring SLAM Alg. 2 in the right side of Figure 9, due to its

3 gated features and lower cardinality error.

VI. SUMMARY

This article introduced the COLA metric for the automatic

evaluation of robotic feature map estimators. In contrast to

its OSPA predecessor, it was shown that the metric can

provide more physically intuitive evaluations of map errors

in situations which cause the OSPA metric to saturate to

its limiting value c, and in repetitions of multiple balanced

Fig. 9: Metric performance for the yellow and orange cells of Figure
5, for OSPA and COLA metric values c = 6 and p = 2.

map estimates. Further, in contrast to the OSPA metric, the

continuity of the COLA metric is preserved as c changes,

for a given map and its estimate, when estimated features

change status from ungated to gated. This provides meaningful

comparisons between estimated maps when the allowable

statistical distances between ground truth features and their

estimates are changed.

APPENDIX: PROOF THAT dpCOLA(M,M̂) IS A METRIC

The proof that dpCOLA(M,M̂) is a metric follows a similar

procedure to the the proof that dpOSPA(M,M̂) is a metric

in [7]. Clearly dpCOLA(M,M̂) ≥ 0 for all M,M̂ because

metric d(c)(mi, m̂j) ≥ 0 for all m
i

and m̂
j. Similarly

dpCOLA(M,M̂) = 0 iff M̂ = M - proof: From (5), if

d
(c,p)
COLA(M,M̂) = 0,

min
σ

m̂∑

i=1

d(c)(mi, m̂σ(i))p

cp
= −(m− m̂) ≤ 0 (31)

Since (5) is defined for m ≥ m̂, the RHS of (31) implies

that m = m̂. The LHS must then also be zero, implying that

d(c)(mi, m̂σ(i)) = 0 ∀i. dpCOLA(M,M̂) = dpCOLA(M̂,M)
because d(c)(mi, m̂j) satisfies the symmetry property. It re-

mains to be verified that the triangle inequality is satisfied.

Consider the set N̂ = {n̂1, . . . , n̂n̂}, with cardinality

n̂ ∈ N0. Consider the following sets of dummy points

U = {ui}i∈N0
and V = {vj}j∈N0

in R
N where

d(ui,x) ≥ c, d(vi,x) ≥ c, d(ui,vj) ≥ c

For all x, and for all i, j

Case 1: (m ≤ m̂ ≤ n̂): In order to raise the cardinality of

sets M and M̂ to n̂, consider the following dummy points:

m
m+i = u

i, 1 ≤ i ≤ n̂−m (32)

m̂
m̂+j = v

j , 1 ≤ j ≤ n̂− m̂ (33)

Then choose σ, τ ∈ Πn̂ such that,

min
π∈Πn̂

n̂∑

i=1

(
d(c)(mi, n̂π(i))

c

)p

=

n̂∑

i=1

(
d(c)(mi, n̂σ(i))

c

)p

(34)

min
π∈Πn̂

n̂∑

i=1

(
d(c)(n̂i, m̂π(i))

c

)p

=

n̂∑

i=1

(
d(c)(n̂i, m̂τ(i))

c

)p

(35)
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Therefore

d
p
COLA(M,M̂) =

(
min
π∈Πm

m̂∑

i=1

(
d(c)(mi, m̂π(i))

c

)p
)1/p

(36)

≤

(
min
π∈Πm

m∑

i=1

(
d(c)(mi, m̂π(i))

c

)p

+ (n̂−m)

)1/p

(37)

≤

(
min
π∈Π

n̂

n̂∑

i=1

(
d(c)(mi, m̂π(i))

c

)p
)1/p

(38)

≤

(
n̂∑

i=1

(
d(c)(mi, n̂σ(i)) + d(c)(n̂σ(i), m̂τ(σ(i)))

c

)p
)1/p

(39)

≤

(
n̂∑

i=1

(
d(c)(mi, n̂σ(i))

c

)p
)1/p

+

(
n̂∑

i=1

(
d(c)(n̂σ(i), m̂τ(σ(i)))

c

)p
)1/p

(40)

≤ d
p
COLA(M, N̂ ) + d

p
COLA(N̂ ,M̂). (41)

In (37) n̂−m dummy points were added to the set M yielding

(38). In (38) the triangular inequality on the metric d(c) and

the application of (34) and (35) resulted in (39). Finally,

Minkowski’s inequality yielded (40).

Case 2: (m, n̂ ≤ m̂): In order to raise the cardinality of sets

M and N̂ to m̂, consider the following dummy points:

m
m̂−i+1 = u

i, 1 ≤ i ≤ m̂−m (42)

n̂
m̂−j+1 = u

j , 1 ≤ j ≤ m̂− n̂ (43)

where d(mi, n̂i) = 0, max(m, n̂) ≤ i ≤ m̂.

Then choose σ, τ ∈ Πm̂ such that,

min
π∈Πm∨n̂

m∨n̂∑

i=1

(
d(c)(mi, n̂π(i))

c

)p

=

min
π∈Πm̂

m̂∑

i=1

(
d(c)(mi, n̂π(i))

c

)p

=

m̂∑

i=1

(
d(c)(mi, n̂σ(i))

c

)p

(44)

min
π∈Πm̂

m̂∑

i=1

(
d(c)(n̂i, m̂π(i))

c

)p

=

m̂∑

i=1

(
d(c)(n̂i, m̂τ(i))

c

)p

(45)

where m ∨ n̂ = max(m, n̂). Therefore, finally

d
p
COLA(M,M̂) =

(
min
π∈Π

m̂

m̂∑

i=1

(
d(c)(mi, m̂π(i))

c

)p
)1/p

(46)

≤

(
m̂∑

i=1

(
d(c)(mi, n̂σ(i)) + d(c)(n̂σ(i), m̂τ(σ(i)))

c

)p
)1/p

(47)

≤

(
m̂∑

i=1

(
d(c)(mi, n̂σ(i))

c

)p
)1/p

+

(
m̂∑

i=1

(
d(c)(n̂σ(i), m̂τ(σ(i)))

c

)p
)1/p

(48)

≤ d
p
COLA(M, N̂ ) + d

p
COLA(N̂ ,M̂) (49)

In (46) the triangular inequality on the metric d(c) and the ap-

plication of (44) and (45) resulted in (47). Again, Minkowski’s

inequality yielded (48).
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