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Abstract—In this paper, we propose a new class of random
finite set (RFS), which is the union of a group of Bernoulli
RFSs with unknown level of correlation, whose statistics are
considered jointly. The proposed RFS is referred to as joint
multi-Bernoulli (JMB) RFS defined by a set of parameters.
As a preliminary study, this paper provides the derivations of
set density, set marginal density of JMB RFS family, and the
resultant tracking filter for a two-target scenario based on finite-
set statistics (FISST). Note that the theoretically sound way
of computing the set marginal density is not well defined in
current FISST. The JMB RFS family offers a parameterized and
generalized set density which bridges the gap between set density
and vector density. Hence, the JMB RFS family inherits several
advantages of vector density, such as analyzing the correlation
between states, extracting the statistics of partial states from
global statistics conveniently, and embedding the target identities
implicitly. The corresponding tracking filter has an accurate
update equations with no need to specify measurement model,
and can be further improved by utilizing the advantages of
JMB RFS family. The aforementioned advantages are clearly
highlighted by the numerical results.

I. INTRODUCTION

Multi-target tracking system usually involves simultaneous-

ly estimating the states, and the number of targets moving in

a surveillance area. Moreover, the number of target is usually

unknown and time-varying due to births and deaths of targets.

In traditional multi-target tracking, e.g., joint probabilistic data

association (JPDA) [1], multi-hypotheses tracker [2], [3] and

multi-target particle filter [4]–[7], individual target states are

usually stacked into a vector formed multi-target state whose

statistics is described by a joint vector density. The fully

developed probability theory owns many useful statistical tools

which offer more freedom for development of vector based

multi-target tracking. For example, for a vector formed multi-

target state, it is convenient to analyze the correlation between

states by computing correlation coefficient and extract the

statistics of partial target states by computing the marginal

densities of the corresponding sub-vectors, and many scholars

have develop improvement strategies utilizing these tools,

e.g., the adaptive parallel filtering according to the correlation

between targets, to enhance the tracking performance and re-

duce the computation burden [6]–[8]. However, vector density

can only depict the statistics of a fixed number of targets

theoretically as the dimensionality of vector is fixed. As a
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result, the vector based multi-target tracking usually needs an

additional process to accommodate births and deaths of targets.

Recently, multi-target tracking approaches in the random

finite set (RFS) framework [9]–[24] represent the collection of

multiple states as a finite set. The RFS, whose cardinality and

individual states are both random, is much more matching the

system of multi-target tracking. In order to handle the statistics

of finite sets, Mahler developed powerful and practical math-

ematical tools, referred to as finite set statistics (FISST) [9]–

[11], which also provides a systematic, unified approach for

multi-target tracking based on explicit, comprehensive, unified

statistical models of multi-target systems. The centerpiece of

the RFS approach is the optimal Bayesian multi-target filter,

but it always involves set integral making it computationally

intractable. In order to alleviate the numerical complexi-

ty, several approximate methods, i.e., Probability hypothesis

density (PHD)/cardinalized PHD (CPHD) [12]–[14], multi-

Bernoulli filters [15]–[17] in which posterior or prior are

approximated as poisson, independent, identically distributed

(i.i.d.) clutter or Multi-Bernoulli processes [9], were proposed.

These processes assuming independence between target states

dramatically reduce the computation burden, but lose precision

with highly approximate update equations. Later, Ba-Ngu Vo

et al. relaxed the independence assumption, and proposed

GLMB process [18]–[24], which admits correlation between

target states and obtains an accurate closed form update

equations for the standard measurement model. However,

as it still assumes independence under different hypotheses,

GLMB process cannot obtain accurate update equations for

the nonstandard measurement models.

In this paper, we propose a new class of RFS, which is

the union of a group of Bernoulli RFSs whose statistics are

considered jointly, and thus is referred to as joint multi-

Bernoulli (JMB) RFS. As the results of preliminary study,

this paper provides the derivations of the set density, marginal

set density of JMB RFS, and the resultant tracking filter for

a two-target scenario. The study on two-target scenario is

meaningful for it is sufficient to reflect the advantages of

the JMB RFS family and lays the foundation of multi-target

scenario. It should be remarked that the theoretically sound

way of computing the set marginal density is not well defined

in current FISST, but is provided in this paper. The JMB RFS

whose maximum cardinality is 2, is called as JMB-2 RFS.

The JMB-2 RFS family provides a generalized set density

which can accommodate unknown level of correlation between

target states, and thus the relevant tracking filter, JMB-2
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filter can obtain an accurate closed form update equation

for any kind of measurement model. A JMB-2 RFS is com-

pletely determined by a set of parameters which consist of

the probabilities of different hypotheses and vector densities

conditioned on different hypotheses. Different hypotheses here

indicate the existence of different targets. Hence, The JMB-2

RFS inherits some advantages of vector density by utilizing

mature statistical tools for random vectors. The advantages of

JMB-2 RFS, in turn, offer the potential and freedom for the

development and improvement of JMB-2 filter.

Firstly, the correlation between states in a JMB-2 RFS

can be analyzed conveniently by computing the correlation

coefficient about targets existence, and the mutual correlation

coefficient matrix [26] under hypothesis where both targets

exist.

Secondly, the JMB-2 RFS enjoys a congenital advantage to

extract the statistics of partial states from the global statistics

of multi-target state by computing the set marginal density.

Thirdly, the identities of target states are implicitly embed-

ded with no need to augment target state with an extra label.

II. NOTATIONS AND THREE STATISTICAL DESCRIPTORS

A. Notations

We adhere to the convention that single-target states are

represented by lowercase letters, e.g., x, while multi-target

states are represented by uppercase letters, e.g., X, X. Symbols

for vector formed states and their densities are bolded, e.g.,

x, X, f(X), while symbols for set formed states and their

densities are italic, e.g., � ,� , �(�). To distinguish labelled

states and distributions from the unlabelled ones, letters with

a line on the top are adopted for the labelled ones, e.g., x,

� , �(�). Moreover, blackboard bold letters represent spaces,

e.g., the state space is represented by �, the label space by

ℱ(�), and the observation space by ℤ. The collection of all

finite sets of � is denoted by ℱ(�). The joint probability

density function, integration and derivative for a random vector

are based on the Euclidean notion of density, integration and

derivative, and are named as vector density, vector integration,

vector derivative, respectively. The multi-target probability

density, integration and derivative for an RFS are based on

FISST notion of density, integration and derivative, and are

named as set density, integration and derivative, respectively.

The labelled single target state x is constructed by augment-

ing a state x ∈ � with a label ℓ ∈ �. The labels are usually

drawn from a discrete label space, � = {��, � ∈ ℕ}, where

all �� are distinct and the index space ℕ is the set of positive

integers. For convenience, in this paper, we use ℕ as the the

label space, i.e., � = ℕ.

To admit arbitrary arguments like sets, vectors and integers,

the generalized Kronecker delta function is given by

�� (�) ≜

{

1, if� = �
0, otherwise

(1)

The vector integrals are using the inner product notation.

For functions a(x) and b(x) defined on �, the inner product

is represented as
〈

a,b
〉

1
=

∫

�
a(x)b(x)�x. For functions

c(x1,x2) and e(x1,x2) defined on �
2, the inner product is

represented as
〈

c, e
〉

2
=

∫

�2 c(x1,x2)e(x1,x2)�(x1,x2). For

some special cases, the inner productions also are denoted as
〈

a(⋅),b(⋅)
〉

1
and

〈

c(⋅, ★), e(⋅, ★)
〉

2
, where ⋅ and ★ are used to

distinguish different dimensions.

B. Three Statistical Descriptors for Multi-target State

In this subsection, we compare three statistical descriptors

for multi-target state with respect to two definitely existing

targets x1,x2 ∈ �. The total target number is fixed to 2, and

� = {1, 2} denote the target label space.

∙ Unlabelled set density: the multi-target state is represented

by the unlabelled finite set � = {x1,x2} whose statistics is

characterized by set density �(�) = �({x1,x2}) in FISST

framework.

∙ Vector density: the multi-target state is represented by

the vector X = (x1,x2) which is constructed by stacking

individual target states. The statistics of X is characterized by

vector density [1]–[8], [26], f(X) = f((x1,x2)).
∙ Labelled set density: the multi-target state is represented

by labelled finite set � = {(x1, ℓ1), (x2, ℓ2)} whose statis-

tics is characterized by the labelled set density �(�) =
�({(x1, ℓ1), (x2, ℓ2)}) [18], [19], where ℓ� ∈ � denote the

target label of x�, � = 1, 2.

Then, we discuss the relationship and the relative merits

between these three statistical descriptors.

∙ The relationship between vector density f(X) and unlabelled

set density �(�) can be represented as [27], [28]:

�({x1,x2}) = f((x1,x2)) + f((x2,x1)) (2)

On one hand, for the vector formed multi-target state,

the order implicit in the components of a vector implies

that targets are labelled. Target labels can reflected from

the ordered vector density, i.e., f((x1,x2)) ∕= f((x2,x1)).
(2) indicates that the transformation from vector density to

unlabelled set density can be seen as a process of information

compression. During this process, target label information is

lost, and it is the target states that only matter. Thus we have

�({x1,x2}) = �({x2,x1}).
It has been pointed out in [27] that as for a given set density,

there exist a family of vector densities corresponding with it.

Based on [27], the RFS family of f((x1,x2)) is defined as:

ℛf(X) = {f́(X) : f́((x1,x2)) + f́((x2,x1))

= f((x1,x2)) + f((x2,x1))}
(3)

Importantly, some vector densities within the RFS family,

which are less multi-modal, are more convenient to approxi-

mate than others.

On the other hand, for the vector formed multi-target state,

the correlation between target states can be analyzed, and the

statistics of partial states can be extracted, conveniently, by

utilizing the mature statistical tool for random vector [26]. The

correlation between x1 and x2 can be analyzed by utilizing

the joint vector density f((x1,x2)) through computing the

mutual correlation coefficient matrix [26], but is difficult to be

analyzed by using the set density �({x1,x2}) for the existing
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FISST lacks the theoretical method to analyze the correlation.

We also can obtain the statistics of x1 or x2 from the big

random vector (x1,x2) by computing the vector marginal

density of x1 or x2, e.g.,
∫

�
f((x1,x2))�x2, but it is difficult

to obtain the statistics of the sub-set {x1} from the big RFS

{x1,x2}, for the marginal density for a sub-set is not well

defined in FISST.

∙ The labelled RFS is first proposed in [18] which provides

procedures for generating special labelled RFSs, such as the

labelled Poisson RFS, and the labelled multi-Bernoulli RFS,

etc. Here, we present a procedure for generating an ordinary

labelled RFS with cardinality fixed to 2, shown in Table I. The

likelihood (probability density) that the procedure in Table

I generates the points in that order (x1, ℓ1), (x2, ℓ2) can be

represented as:

Thus the labelled density which characterizes the labelled

RFS generated by the procedure in Table I is the symmetriza-

tion of L(((x1, ℓ1), (x2, ℓ2))) over all permutations of {1,2},

i.e.,

�{(x1, ℓ1), (x2, ℓ2)} =

�(1,2)((ℓ1,ℓ2))f((x1,x2))+�(1,2)((ℓ2,ℓ1))f((x2,x1))
(4)

L(((x1, ℓ1), (x2, ℓ2))) = �(1,2)((ℓ1, ℓ2))f((x1,x2)) (5)

TABLE I
THE PROCEDURE OF GENERATING A LABELLED RFS WITH CARDINALITY

FIXED TO 2

Sampling a Labelled RFS

Initialize � = ∅
Sample (x1,x2) ∼ f((x1,x2))
for �=1:2

� = � ∪ {(x�, �)}
end

The relationship between the vector density f(X) and the

labelled set density �(�) can exploited from (4). The sum

in (4) is zero, except for the case {ℓ1, ℓ2} = {1, 2} where

(ℓ1, ℓ2) = (1, 2) or (ℓ2, ℓ1) = (1, 2). Thus, for (4), only

one sum-item works. From this point, the labelled set density

is equivalent to the vector density. This conclusion also has

been proved in [28]. Even though the labelled set density

incorporates target label information, it is also hard to extract

statistics of partial states confined by existing FISST.

In terms of aspects discussed above, vector density is the

best descriptor for definitely existing targets among these three

approaches. The vector density owns more complete infor-

mation, especially the target label information. Moreover, in

the vector notation, it is convenient to analyze the correlation

between target states and extract the statistics of partial target

states.

III. JMB-2 RFS

In practical scenarios, the number of existing targets is

usually unknown and time-varying. The reason is that apart

from the uncertainty about target kinematics, there is still

uncertainty about whether targets exist or not. For instance,

targets may appear or die, and targets may be submerged

by heavy clutter. Here, we call a target which may or may

not exist as a “twinkling” target. It is reasonable to model

a group of unknown and time-varying number of targets as

a fixed number of “twinkling” targets, for example a multi-

Bernoulli RFS. Though vector density is the best statistics

descriptor for two definitely existing targets in terms of these

aspects discussed in subsection II-B, it cannot describe the

complicated statistics of “twinkling” targets in a theoretically

sound way for the dimension of a random vector is fixed.

Hence, we resort to the RFS framework.

A. Definition of JMB-2 RFS

Consider two “twinkling” targets. Each single “twinkling”
target is naturally modelled as a Bernoulli RFS �� whose
cardinality only has two possible values (0 or 1) such that
�� = ∅ when target � does not exist, and �� = {x�} when
target � dose exist, where the index of ��, � = 1, 2 has the
function to distinguish target identities and thus is served as
the target label, x� ∈ � denotes the kinematical state of target
� conditioned on existence, and � is the single target space.
The two “twinkling” targets are mathematically modelled as
the union Ψ = �1 ∪ �2, and the correlation between �1 and
�2 is completely unknown. Sometimes the two targets are far
enough apart that their randomness is independent of each
other. Sometimes, the two targets are so close together that
their observability is affected by the same underlying noise
and clutter, thus their sensing situation being observed will
have correlation. Hence, it is unreasonable to assume �1 and
�2 statistically independent, as a multi-Bernoulli RFS does. A
joint distribution is appropriate to describe the uncertainty of
two targets’ existence. We define a random vector (�1, �2),
where

�� =

{

1, �� ∕= ∅
0, �� = ∅

, � = 1, 2

and the joint distribution of (�1, �2) is

Pr{�1 = �, �2 = �} = ���, (�, � = 0, 1) (6)

We use an idiomatic table shown in Table II to denote the

joint distribution of (�1, �2).

TABLE II
THE JOINT DISTRIBUTION OF (�1, �2)

�2

�1 0 1

0 �00 �10
1 �01 �11

Based on the definition of the correlation coefficient [26],
the correlation coefficient between �1 and �2 can be comput-
ed as:

��1�2
=

�11 − (�10 + �11)(�01 + �11)
√

(�10 + �11)(1− �10 − �11)(�01 + �11)(1− �01 − �11)

(7)

Then a multi-hypotheses organized stochastic model is

adopted to describe the statistics of Ψ. The different values
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of (�1, �2) are considered as different hypotheses which are

shown as:

�00: (�1, �2) = (0, 0), which means neither of two tar-

gets exist, and under this hypothesis Ψ=�1∪�2=∅.

�10: (�1, �2) = (1, 0), which means target 1 exists, �1 =
{x1} and target 2 does not exist, �2 = ∅. Under this

Hypothesis, Ψ = �1∪�2 = {x1} and the probability

density of x1 is �10(x1).
�01: (�1, �2) = (0, 1), which means target 2 exists, Ψ =

{x2} and target 1 does not exist, Ψ = ∅. Under this

Hypothesis, Ψ = �1∪�2 = {x2} and the probability

density of x2 is �01(x2).
�11: (�1, �2) = (1, 1), which means both target 1 and

target 2 exist, i.e., �1 = {x1} and �2 = {x2}.

Under this hypothesis, Ψ = �1 ∪ �2 = {x1,x2}.

The statistics of the ordered vector (x1,x2) ∈ �
2 is

depicted by vector density �11((x1,x2)).

Under hypothesis �11, where both targets exist, the corre-

lation between the states x1 and x2 can be analyzed by com-

puting the mutual correlation coefficient matrix [26] based on

the vector density �11((x1,x2)), and is denoted as �x1x2∣�11
.

Remark: Under hypothesis �11, we should have adopted the

set density in order to describe the statistics of Ψ, however,

based on the discussions in the subsection II-B, vector density

is better than set density in terms of its convenience in ana-

lyzing the correlation, extracting the statistics of partial target

states and incorporation of target labels. More importantly a set

density can be completely characterized by a vector density in

the RFS family corresponding to this set density [27]. Thus,

under hypothesis �11, we choose a less multi-modal vector

density [27], [28] �11((x1,x2)) within the RFS family of the

set density of Ψ, and the order implicit in components of

�11((x1,x2)) is consistent with the order of indexes of Ψ1

and Ψ2.

Overall, Ψ is the union of two Bernoulli RFSs ��, � = 1, 2
with unknown level of correlation whose statistics are consid-

ered jointly, and thus is referred to as joint multi-Bernoulli-

2 (JMB-2) RFS where 2 indicates two “twinkling” targets

are involved. A JMB-2 RFS can be completely defined by

a set of parameters {�10,�10, �01,�01, �11,�11}, referred to

as JMB-2 parameters. The parameter �00 is omitted, for it

can be determined by �00 = 1− �10− �01− �11. The JMB-

2 parameters include probabilities of different hypotheses and

the vector densities of target states under different hypotheses.

Different hypotheses mean the existences of different targets.

All hypotheses consider uncertainty of target existence jointly

and under the hypothesis where both targets exist, the statistics

of two target states are considered jointly. Also the correlation

between �1 and �2 can be analyzed from two levels: a)

computing the correlation coefficient between �1 and �2, i.e.,

��1�2
; b) computing the mutual correlation coefficient matrix

under hypothesis where both targets exist, �x1x2∣�11
.

Remark: The JMB-2 RFS can be generalized to the JMB-

� (� > 2) RFS to describe the statistics of more than two

“twinkling” targets, which will be studied in the future. The

JMB-2 RFS also can be degenerated to JMB-1 RFS which only

describes the single “twinkling” target. Obviously, a JMB-

1 RFS is a Bernoulli RFS which is completely determined

by Bernoulli parameters {�,p(x)} with � the probability of

existence and p(x) the density conditioned on existence.

B. Set Density of JMB-2 RFS

The following results show the set density and the cardinal-

ity distribution of JMB-2 RFS.

Proposition 1: If Ψ is a JMB-2 RFS defined by its JMB-2

parameters {�10,�10,�01,�01,�11,�11}, the set density of Ψ is

�Ψ(�)=

⎧





⎨





⎩

�00, �=∅
�10�10(x)+�01�01(x), �={x}
�11[�11((x1,x2))+�11((x2,x1))], �={x1,x2}
0, ∣�∣ ≥ 3

(8)
Proof : Because of the multi-hypotheses structure of Ψ, we

can utilize the whole probability formula [26] to represent the
belief mass function [9] of Ψ ,

�Ψ(�) = Pr(Ψ ⊆ �) = Pr(�1 ⊆ �, �2 ⊆ �)

+ �01 Pr(x2 ∈ �∣�1 = 0, �2 = 1)

+ �11 Pr(x1 ∈ �,x2 ∈ �∣�1 = 1, �2 = 1)

(9)

with � ⊆ � the observation region. Note that the last term
in sum of (9) is further represented as:

Pr(x1 ∈ �,x2 ∈ �∣�1 = 1, �2 = 1)

= Pr((x1,x2) ∈ � × �∣�1 = 1, �2 = 1)

Using JMB-2 parameters of Ψ, (9) can be further represented
as

�Ψ(�) = �00+�10

∫

�

�10(x1)�x1+�01

∫

�

�01(x2)�x2

+ �11

∫

�×�

�11((x1,x2))�(x1,x2)
(10)

It follows from Radon-Nikodým theorem [9] that set density
of Ψ can be constructed by taking the set derivation of the
belief-mass function of Ψ:

�Ψ(�) =
��Ψ

��
(∅) (11)

Substituting (10) into (11), the set density of Ψ can be

obtained.

Remark: In the the remainder of this paper, the item JMB-2

density is used to mean the set density of a JMB-2 RFS. The

JMB-2 density of form (8) provides a unified representation of

statistics of two “twinkling” targets and is the basis of tracking

relevant filter.

C. Set Marginal Density of JMB-2 RFS

For vector formed multi-target state, partial target states can

be represented as a sub-vector and the well-defined vector

marginal density [26] in Euclidean notion of integration is

a useful tool for extracting statistics of sub-vector from glob-

al statistics. For set formed multi-target state, partial target

states are represented as a subset. However, in FISST, the

marginal density for random sub-set is not well-defined. It

is difficult to exact statistics of sub-set from global set density

in a theoretically sound way. We note that, in FISST, many

265



concepts relevant to RFS are the natural generalization of

the corresponding concepts of random vector. For instance,

the belief-mass function and the set density are respectively

natural generalizations of the probability-mass function and

the vector density [9], respectively. Motivated by this, in this

subsection, we give a rational definition of set marginal density

by the natural generalization of the vector marginal density.

Definition 1: Let Ψ be an RFS. Then for any random finite

subset of Ψ, denoted by �, its set density function ��(�), is

called set marginal density of � with respect to Ψ.

Proposition 2: Let Ψ be an RFS. Then for any random finite

subset of Ψ, denoted by �, its set marginal density of � with

respect to Ψ, denoted by ��(�) can be derived by

��(�) =
� Pr(� ⊆ �,Ψ/� ⊆ �)

��

∣

∣

∣

∣

�=∅

(12)

where “�/��” denotes a set derivative [9].

Note that our goal is to compute the set marginal density

��(�) from the global set density �Ψ(X). A direct idea is

to represent the probability Pr(� ⊆ �,Ψ/� ⊆ �) in (12)

as the set integral of �Ψ(X) and then take set derivative.

However, Pr(� ⊆ �,Ψ/� ⊆ �) denotes the probability that

the elements in Ψ belong to different spaces such that it cannot

be represented as the set integral of �Ψ(X) based on the

definition of set integral [9]. Hence, though Proposition 2 gives

a fundamental computing method for set marginal density, it

is still difficult to reach this goal for a universal RFS. The

following results present a method to compute the set marginal

density for a JMB-2 RFS.

Proposition 3: If Ψ is a JMB-2 RFS defined by its JMB-

2 parameters {�10,�10,�01,�01,�11,�11}, then Ψ is the union

of two Bernoulli RFSs �1, �2. The set marginal density of

�� with respect to Ψ is a Bernoulli density with parameters

{��,p�(x)}, � = 1, 2, where

�1 =�10 + �11

p1(x)=
�10

�10 + �11
�10(x)+

�11
�10 + �11

∫

�11((x,x2))�x2

�2 =�01 + �11

p2(x)=
�01

�01 + �11
�01(x)+

�11
�01 + �11

∫

�11((x1,x))�x1

(13)

Proof : Taking the set marginal density of �1 for instance,
due to the multi-hypotheses structure of Ψ, we can further
represent Pr(�1 ⊆ �,Ψ/�1 ⊆ �) in (12) utilizing the whole
probability formula:

Pr(�1 ⊆ �,Ψ/�1 ⊆ �) = Pr(�1 ⊆ �, �2 ⊆ �)

=�00 + �10 Pr(x1 ∈ �∣�1 = 1, �2 = 0)

+ �01 Pr(x2 ∈ �∣�1 = 0, �2 = 1)

+ �11 Pr((x1,x2) ∈ � × �∣�1 = 1, �2 = 1)

(14)

Then using JMB-2 parameters, (14) can be further represented
as:

Pr(�1⊆�,Ψ/�1⊆�)=�00+�10

∫

�

�10(x)�x

+�01 +�11

∫

�

(
∫

�

�11((x1,x2))�x1

)

�x2

(15)

Based on Proposition 2, we can obtain set marginal density

of �1 with respect to Ψ by taking the set derivative of (15).

In addition, the set density of �2 can be computed as similar

as �1.

Remark: The Definition 1, Proposition 2 provide a theoreti-

cal foundation to extract statistics of partial target states from

global statistics in FISST framework. Proposition 3 shows that

it is convenient to compute the set marginal density of any

random finite subset of a JMB-2 RFS by utilizing its JMB-

2 parameters which incorporate the vector densities under

different hypotheses.

D. Advantages of JMB-2 RFS

In this subsection, we summarize the advantages of JMB-2

RFS as follow:

1) Each parameter within the JMB-2 parameters used to

define a JMB-2 RFS has its own meaning and reveals some

detail statistical information about the RFS, besides the global

statistics of JMB-2 RFS. One important aspect is that we

can analyze the correlation between states in a JMB-2 RFS

from two levels, i.e., ��1�2
and �x1x2∣�11

. Additionally, the

probability about the existence of different targets, �10, �01, �11,

can also be achieved.

2) The JMB-2 RFS family has a congenital advantage to

extract the statistics of partial states from the global statistics.

A JMB-2 RFS is characterized by its JMB-2 parameters which

incorporate vector densities under different hypotheses, and

thus the defined marginal density of any subset of a JMB-2

RFS can be computed conveniently by utilizing the marginal

density of random vector based on (13).

3) The JMB-2 RFS family inherits advantages of the vector

density in that the identities of target states are implicitly

embedded with no need to augment target state with an

extra label. The JMB-2 RFS can be seen as the union of

two Bernoulli RFSs with unknown level of correlation. As

a Bernoulli RFS is used to describe a “twinkling” target,

the index of Bernoulli RFS can be used to distinguish target

identity. Moreover, the target labels implicit in the components

of vector densities under different hypotheses are consistent

with the indexes of Bernoulli RFSs.

Fig. 1 gives an example of JMB-2 parameters and the

computing process of set marginal density for a JMB-2 RFS. It

can be seen that the Bernoulli RFSs which construct this JMB-

2 RFS are not independent. The corresponding correlation

coefficient of �1 and �2, ��1�2
= 3

8 , based on (7). Under

the hypothesis where two Bernoulli RFSs are not empty, the

correlation coefficient between �1, �2 ∈ �, ��1�2∣�11
= 0.8.

IV. THE MULTI-TARGET FILTERING BASED ON JMB-2

DENSITY

A. Problem Formulation

Suppose that at time � there are �(�) ≤ 2 target states

x�
1 , . . . ,x

�
�(�), each taking values in a single target space �,

and �(�) measurements z�1 , . . . , z
�
�(�), each taking values in

a measurement space ℤ. The multi-target state and multi-

target measurement at time � are represented as the finite
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Fig. 1. Computing the set marginal density for a JMB-2 RFS.

sets, respectively, i.e., �� = {x�
1 , . . . ,x

�
�(�)} and �� =

{z�1 , . . . , z
�
�(�)}.

The multi-target filtering problem can be cast as a multi-
target Bayesian filter [9] on the space of finite sets ℱ(�). The
Bayesian filter propagates the posterior multi-target density
�(��∣�1:�) in time, which can be computed in two stages:
prediction (16) and update (17).

�(��∣�1:�−1)=

∫

�(��∣��−1)�(��−1∣�1:�−1)���−1
(16)

�(��∣�1:�) ∝ �(��∣��)�(��∣�1:�−1) (17)

where �1:� denotes the measurement history up to time �;

�(��∣�1:�−1) and �(��∣��−1) denote multi-target predicted

density and multi-target Markov transition density from time

� − 1 to �, respectively; �(��∣��) and �(��∣��) denote

the multi-target posterior density and multi-target likelihood

function at time �, respectively.

B. Target Dynamics and Measurement Model

We consider a “standard” multi-target motion model with
no birth, which is similar to the case III in [9, Ch.13], for
we only consider the case that the maximum cardinality is
2 in this paper. Given a multi-target state ��−1 at time �-
1, each x�−1 ∈ ��−1 either survives into time step � with
probability ���(x

�−1) and moves to a new state x� with

a Markov transition density f�∣�−1(x�∣x�−1), or dies with
probability 1−���(x

�−1). Thus, the predicted multi-target state
�� conditioned on ��−1 at time � can represented as the
union,

�� =
∪

x
�−1∈��−1

Υ(x�−1) (18)

with Υ(x�−1) the predicted state of x�−1. The motion

and death of each targets are assumed to be conditional

independent of the previous multi-target state ��−1. The

predicted multi-target state �� is thus a multi-Bernoulli

RFS conditioned on ��−1 with multi-Bernoulli parameter-

s {���(x
�−1), f�∣�−1(x�∣x�−1)}x�−1∈��−1 . Additionally, we

consider a generalized measurement model and the precise

form of �(��∣��) is not specified.

C. JMB-2 Filter

In this subsection, we show that the JMB-2 density permits

an accurate closed-form solution under the prediction equation

for a Markov transition model described in subsection IV-

B and the update equation for a generalized multi-target

likelihood function.
Proposition 4: Suppose that at time � − 1, the posterior

set density is a JMB-2 density with its JMB-2 parame-
ters {��−1

10 ,��−1
10 , ��−1

01 ,��−1
01 , ��−1

11 ,��−1
11 }, then under multi-

target Markov transition model (18), the predicted set den-
sity is also a JMB-2 density with its JMB-2 parameters

{�
�∣�−1
10 ,�

�∣�−1
10 , �

�∣�−1
01 ,�

�∣�−1
01 , �

�∣�−1
11 ,�

�∣�−1
11 }, where

�
�∣�−1

10
=��−1

10

〈

��� ,�
�−1

10

〉

1
+��−1

11

〈

���(⋅)(1−���(★)),�
�−1

11 ((⋅, ★))
〉

2

�
�∣�−1

10
(x�

1)=
��−1

10

�
�−1∣�
10

〈

���f
�∣�−1(x�

1 ∣⋅),�
�−1

10

〉

1

+
��−1

11

�
�−1∣�
10

〈

���(⋅)(1−���(★))f
�∣�−1(x�

1 ∣⋅),�
�−1

11 ((⋅,★))
〉

2

�
�∣�−1

01
=��−1

01

〈

��� ,�
�−1

10

〉

1
+��−1

11

〈

���(★)(1−���(⋅)),�
�−1

11 ((⋅, ★))
〉

2

�
�∣�−1

01
(x�

2) =
��−1

01

�
�−1∣�
01

〈

���f
�∣�−1(x�

2 ∣⋅),�
�−1

01

〉

1

+
��−1

11

�
�−1∣�
01

〈

���(★)(1−���(⋅))f
�∣�−1(x�

2 ∣★),�
�
11((⋅, ★))

〉

2

�
�∣�−1

11
= ��−1

11

〈

���(⋅)�
�
�(★),�

�−1

11 ((⋅, ★))
〉

2

�
�∣�−1

11
((x�

1 ,x
�
2)) =

��−1

11

�
�∣�−1

11

⋅
〈

f
�∣�−1(x�

1 ∣⋅)f
�∣�−1(x�

2 ∣★), �
�
�(⋅)�

�
�(★)�

�−1

11 ((⋅, ★))
〉

2

(19)

Proposition 5: Suppose that at time �, the predict-
ed set density is a JMB-2 density with its parameters

{�
�∣�−1
10 ,�

�∣�−1
10 , �

�∣�−1
01 ,�

�∣�−1
01 , �

�∣�−1
11 ,�

�∣�−1
11 }, then the up-

dated set density is a JMB-2 density with its JMB-2 parameters
{��10,�

�
10, �

�
01,�

�
01, �

�
11,�

�
11}, where

��10 =
�
�∣�−1

10

〈

�(��∣{⋅}),��∣�−1

10
(⋅)

〉

1

��(��∣�1:�)

�
�
10(x

�) =
�(��∣x�)�

�∣�−1

10
(x�)

〈

�(��∣{⋅}),��∣�−1

10
(⋅)

〉

1

��01 =
�
�∣�−1

01

〈

�(��∣{⋅}),��∣�−1

01
(⋅)

〉

1

��(��∣�1:�)

�
�
01(x

�) =
�(��∣{x�})��∣�−1

01
(x�)

〈

�(��∣{⋅}),��∣�−1

01
(⋅)

〉

1

��11 =
�
�∣�−1

11

〈

�(��∣{⋅, ★}),��∣�−1

11
((⋅, ★))

〉

2

��(��∣�1:�)

�
�
11(x

�
1 ,x

�
2) =

�(��∣{x�
1 ,x

�
2})�

�∣�−1

11
((x�

1 ,x
�
2))

〈

�(��∣{⋅, ★}),��∣�−1

11
(⋅, ★)

〉

2

(20)

with

��(��∣�1:�)=�
�∣�−1

00
�(��∣∅)+�

�∣�−1

10

〈

�(��∣{⋅}),��∣�−1

10
(⋅)
〉

1

+ �
�∣�−1

01

〈

�(��∣{⋅}),��∣�−1

01
(⋅)

〉

1

+ �
�∣�−1

11

〈

�(��∣{⋅, ★}),��∣�−1

11
((⋅, ★))

〉

2

(21)

Notice that under the hypothesis where both targets exist,

as the measurement set �� does not provide any labelling

information for targets, the labels of targets may become

confusing when targets are in proximity. This phenomenon
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may lead to a multi-modal vector density ��
11((x1,x2)). When

this phenomenon arises, we can refer to the approach in [27]

to switch a less multi-modal vector density, or the approach

in [28] to build the track by minimising track jittering.

Propositions 4 and 5 imply that starting from a JMB-

2 prior, all subsequent predicted and posterior densities are

also JMB-2 densities. Multi-target Bayesian filter can be

resolved in an accurate closed form when relevant densities

are JMB-2 densities, which is referred to as the JMB-2 filter.

A JMB-2 density is completely characterized by its JMB-2

parameters {�10,�10, �01,�01, �11,�11}, hence implementing

the JMB-2 filter then amounts to recursively propagating JMB-

2 parameters forward in time.

D. Multi-target State Extraction

Based on the advantages of the JMB-2 RFS in terms of

computing set marginal density, a free-clustering state extrac-

tion approach is generated naturally for JMB-2 filter.

Firstly, compute the posterior set marginal densities for

each “twinkling” targets by (13). The marginal densities of all

“twinkling” targets can be represented as a group of Bernoulli

parameters, i.e., {��� ,p
�
� (x)}

2
�=1. ��� indicates how likely it is

that hypothesized track � is a true target, and the posterior

marginal density p�
� (x) describes statistics of kinematics of

the target �.
Secondly, compute the posterior cardinality distribution,

estimate the number of targets as the expected or maximum a

posteriori cardinality estimate, and select the corresponding

number of the estimations from marginal densities (x̂�
� =

∫

�
p�
� (x)�x) with the highest existence probabilities ��� .

E. A correlation analysis method in tracking application

Based on the proposed state extraction method in subsection

IV-D, another simple correlation analysis method suitable

for the tracking scenario is proposed naturally. The targets

1 and 2 exhibit correlation, if �(x̂�
1 , x̂

�
2) ≤ Λ, where Λ

is a distance threshold, and �(⋅, ★) is a distance function

depending on the way in which measurements are acquired.

The similar method also has been used in [6], [7]. Compared

with computing ��1�2
and �x1x2∣�11

, this method can only

provide a qualitative analysis about whether targets exhibit

correlation or not, but it is a simple method and easy to realize.

When the quantitative analysis is not required, this method is

very meaningful.

V. NUMERICAL EXAMPLE

In this section, the advantages of JMB-2 RFS are verified
by several numerical experiments. We consider a nonlinear
superposition track-before-detect (TBD) measurement model
for which PHD/CPHD and multi-Bernoulli filters [16] cannot
obtain an accurate closed-form solution. Targets superposition
on measurements are permitted when they are located in
proximity. The surveillance region is divided into � cells.
The measurement data at time � are collected in the vector
Z� = (z�1 , ⋅ ⋅ ⋅ , z

�
� ) ∈ ℝ

� , with z�� the intensity measure-
ment obtained in the �th cell. The measurement set at time � is
a singleton set, i.e., �� = {Z�}. The intensity measurements
are assumed to be independently distributed conditioned on

the multi-target state. The multi-target likelihood function can
then be written as

�(��∣��) =

�
∏

�=1

ℓ(z�� ∣�
�) (22)

where ℓ(z�� ∣�
�) is the measurement density for the �th cell.

In the numerical examples a Gaussian model [31] is adopted:

ℓ(z�� ∣�
�) = � (z�� ;

∑

x∈��

��
� (x), �

� )

where ��
� (x) is the power contribution from target state x to

the �th cell and �� is noise power. Here, ��
� (x) is described

by a point spread function, for example,

��
� (x) =

�����
�

2��2

�

exp(−
(���− ��)

2 + (���− ��)
2

2�2

�

) (23)

where �� is the source power, �2
� is the blurring factor, and

(��, ��) is the position of target x, �� and �� are cell side

lengths, and � = (�, �) denotes the position of �th cell in two-

dimensionality image of the surveillance region. The SNR is

defined by 10 log(�� /�� ).
In the following experiments, measurements are collected

on a 230×60 grid with cell side lengths of �� = �� = 1�. We

apply a point spread function with the blurring factor �2� = 1.

The SNR of each target is selected to be 15dB. The effective

template �(x) is the 5×5 pix square region whose center is

closest to (��, ��). The scenario involves two targets following

a nonlinear nearly constant turn model [12], whose tracks cross

twice, as shown in fig. 2. The number of total tracking frames

is 96. Both targets are lasting from the 1st frame to the 96th

frame.
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Fig. 2. Two targets whose tracks cross twice and the output of I.

A. Experiment 1

The implementation of JMB-2 filter is that ��
10(x), �

�
01(x),

and ��
11(x) are implemented using SMC approach with the

particle number proportional to ��10, ��01 and ��11. In this

experiment, the total number of particles is 100000. This

object is to verify the first advantage of JMB-2 RFS mentioned

in subsection III-E. Fig. 3 (a) shows the curves of ��01, �
�
10, �

�
11

over time for a single run. From Fig. 3 (a), it can be seen

that during the whole scenario ��11 is extremely close to 1,

which is consistence with that both true targets are surviving

through the entire scenario. Hence, we omit the curve for the

correlation coefficient ���1�2
, and only analyze the correlation

between target states under �11. For convenience, we only
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provide one element of ��
x�
1
x�
2
∣�11

, i.e., ��
��
�,1�

�
�,2∣�11

, the

correlation coefficient between ���,1 and ���,2, with ���,� the

position of x�
� on �-coordinate, as shown in Fig. 3 (b). Another

correlation analysis method for target tracking is also provided

here. As the TBD styled measurements depend only on the

targets positions, then a suitable distance function �(⋅, ★) is

∣�̂�
1 − �̂�

2 ∣, with �̂�
� the estimated position of target �. Fig. 3

(b) shows distance between the estimated targets position over

time for a single run, and the distance threshold Λ = 10�.

The two correlation analysis methods in Fig. 3 (b) both show

that the correlation between posterior target states is extremely

high when targets are in proximity, and is extremely low when

targets are well separated. The reason is that when targets are

closely spaced, target superpositions on measurements arise

[6], [7] making the posterior target states not independent.

0 10 20 30 40 50 60 70 80 90 96
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Frame Number

P
ro

b
a

b
il

it
y

 

 

ε
k

11

ε
k

01

ε
k

10

(a)

0 10 20 30 40 50 60 70 80 90 96
−1

−0.5

0

Frame number

ρ
θ

x
,1

θ
x
,2

|H
1
1

0 10 20 30 40 50 60 70 80 90 96
0

20

40

Frame  number

D
is

ta
n

c
e
 (

m
)

10m

(b)

Fig. 3. The curves of the some parameters over time: (a) the probabilities un-
der different hypotheses, ��

10
, ��

01
, ��

11
, (b) the absolute correlation coefficient,

∣��
��,1��,2∣�11

∣.

B. Experiment 2

In this subsection, we assess the performance of three

algorithms as follow:

I: The M-SMC filter [9] is given as benchmark with a

common clustering approach, i.e., the Expectation Maximiza-

tion (EM) algorithm [32] employed for multi-target state

extraction. The particle number is set to be 1000. The M-SMC

filter is chosen as benchmark for it is the only FISST based

filter which can be closed form under any kind of measurement

model, as it is the SMC approximation of optimal Bayesian

filter.

II: The proposed JMB-2 filter is given. The total number of

particles for ��
10(x),�

�
01(x),�

�
11(x) is 1000.

III: when targets are in proximity and may have corre-

lation, JMB-2 filter which considers estimate targets jointly

is employed. Then when the targets are far from each other

and can be seen as posterior independence approximately, two

parallel Bernoulli filters are employed. The transformation

from JMB-2 filter to parallel Bernoulli filters is carried out

through computing the posterior set marginal densities for each

targets using (13) based on the correlation analysis. As we only

require the information about whether targets have correlation,

the method using the distance function in subsection IV-E is

adopted and the threshold parameter is also set to be 10m.

Due to this transformation, III can make full use of posterior

independence while estimates targets jointly when they have

correlation. For the JMB-2 filter, parameters are set as II. For

the Bernoulli filter, the particle number for each p�
� (x) is 1000.
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Fig. 4. The performance metrics over time of I, II and III: (a) averaged OSPA
errors, (b) averaged executive time.
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Fig. 5. The estimated tracks for II: (a) case 1, (b) case 2.

For all the algorithms, track initiations are performed within

the region around the true target states. The performance of

three algorithms are examined in terms of the Optimal Sub-

Pattern Assignment (OSPA) error [33] and the executive time.

All performance metrics are averaged over 1000 independent

Monte Carlo runs.

Fig. 4 (a) shows the estimation errors in terms of the

averaged OSPA errors for I∼III. It can be seen that compare

with II and III, I performs much more poorly, with the OSPA

errors much higher and less stable. Fig. 2 also exhibits the

output of I for a single run, which shows that sometimes

targets are lost abnormally. The reason is that the clustering

algorithm used to perform state extraction in I may bring the

estimation deviation and is not very robust. Moreover, Fig. 4

(b) reflects that the average filtering time for I, II and III are

at the same level, while the average executive time for states

extraction of I is higher above 2.5∼4 orders of magnitude in

terms of �� than the other two. Thus we conclude that the

proposed free-clustering states extraction approach is much

less burden-some, more accurate and robust than the clustering

states extraction approach.

Fig. 4 (a) also demonstrates that performance improvement

of III towards II is remarkable. The reason is that III can

make full use of independence of two targets as soon as

possible, and thus can achieve better performance than III

for the same number of particles. In addition, Fig. 4 (b) also

shows that the states extraction time for III is further reduced

when transforming to the two parallel Bernoulli filters. We

can conclude that after utilizing the advantage of first and

second advantages of JMB-2 RFS, i.e., analyzing correlation
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between targets and extracting the statistics of the sub-set, the

performance of the corresponding tracking filter can be further

enhanced.

Additionally, Figs. 5 (a) and (b) show the estimated tracks

built by II for two single runs respectively, which indicate

that II has ability to identify the target identities and verify

the third advantage of JMB-2 RFS. Actually, III also can build

tracks, and for lack of space, we do not give here. It can be

seen that the target identity can be recognized accurately when

targets are well separated, however, when targets meet each

other, target identities may be confused and will affect the

remaining stage of tracking, as shown in Fig. 5 (b). Actually,

the confusion of target identities when targets are in proximity

is a common issue in multi-target tracking, and many scholars

are devoted to study on this. The study on the track formation

based on JMB-2 RFS, especially for closely spaced targets, is

beyond the scope of this paper and will be done future.

VI. CONCLUSION

In this paper, we proposed a new class of RFS, joint multi-

Bernoulli (JMB) RFS in the framework of random finite set

(RFS), which is the union of a group of Bernoulli RFSs with

unknown level of correlation, and is completely determined

by a set of parameters. As a preliminary study, this paper

provides both the derivations of the set density, set marginal

density of the proposed RFS family, and the resultant tracking

filter for a two-target scenario. The simulation results verify

the advantages of the proposed JMB RFS family summarized

in subsection III-E. Future works will expand the results

of two-target scenario to multi-target scenario, i.e., JMB-

� RFS. However, the JMB-N RFS suffers from problems

that the number of hypotheses increases exponentially with

the number of targets. The Efficient implementation with

reasonable approximations for JMB-� filter will be studied

in the future. Also the track formation based on JMB RFS

especially for closely spaced targets also will be studied in

the future.
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