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Abstract—In this paper, we address the problem of the dis-
tributed multi-target tracking with labelled set filters in the
framework of generalized Covariance Intersection (GCI). Our
analyses show that the label space mismatching phenomenon,
which means the same realization drawn from label spaces of
different sensors does not have the same implication, is quite
common in practical scenarios and may bring serious problems.
To get rid of the bad influence of label space mismatching
phenomenon, firstly, we propose a robust strategy for distributed
fusion with labelled set posteriors in which labelled set posteriors
are transformed to their unlabelled versions firstly and the
GCI fusion is performed with the unlabelled posteriors then.
Secondly, we derive the unlabelled versions of common labelled
set distributions in generalized labelled multi-Bernoulli (GLMB)
family and show that they all belong to the same (unlabelled)
random finite set (RFS) family, referred to as generalized multi-
Bernoulli (GMB) family. Thirdly, we derive the explicit formula
for GCI with GMB distributions, which enables the distributed
fusion with GLMB filter family, including the GLMB, �-GLMB,
M�-GLMB and LMB filters. Simulation results for Gaussian
mixture implementation have demonstrated the performance of
the proposed distributed fusion algorithms in two challenging
tracking scenarios.

I. INTRODUCTION

Distributed multi-target tracking (DMTT) has become in-

creasingly important due to its lower communication cost and

stronger fault-tolerance abilities compared with centralized

fusion. One of the remarkable problems of DMTT is that

the estimates from different sensors exist unknown level of

correlation. One solution is the optimal fusion [1], howev-

er, it is ruled out by its unacceptable cost of computing

the common information between sensors. An alternative is

to use suboptimal fusion technique, generalized Covariance

Intersection (GCI) based on Exponential Mixture Densities

(EMDs) proposed by Mahler [2]. The highlight of GCI is

that it is capable to fuse both Gaussian and non-Gaussian

formed multi-target distributions from different sensors with

completely unknown correlation.

Based on the work in [2], Clark et al. proposed tractable for-

mulations of GCI for special forms of multi-target distributions

[3], i.e., Possion, independent identically distributed (i.i.d.)
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cluster and Bernoulli distributions. Using these derivations,

a sequential Monte Carlo (SMC) realization of distributed

fusion with probability hypothesis density (PHD) filter was

presented in [4]. Meanwhile, [5] addressed the problem of

DMMT with a Gaussian mixture cardinalized PHD (GM-

CPHD) filter. The work of distributed detection and tracking

with Bernoulli filter over a Doppler-shift sensor network has

been completed in [6]. Compared with PHD/CPHD filters

[7]–[11], the multi-Bernoulli (MB) filters [13]–[18] which

are the extension of Bernoulli filters [12], are more useful

in problems that require particle implementations or target

individual existence probability. In our preliminary work, [19],

we derived the explicit formula for GCI with MB distributions

based on two step reasonable approximations, and proposed a

robust distributed fusion with MB filter.

To summarize the filters mentioned above, on one hand,

they are not multi-target trackers because target states are

indistinguishable, and on the other hand, they are almost

not the closed-form solution to the optimal Baysian filter

even assuming a special observation model, such as standard

observation model [7]. Recently, the notion of labelled random

finite set (RFS) is introduced to address target trajectories

and their uniqueness in [20], [22]–[24]. Accompanied with

this notion, a class of labelled RFSs, generalized labelled

multi-Bernoulli (GLMB) RFSs which are the conjugate priors

for the standard multi-target likelihood function, provides a

closed-form solution to the optimal Bayesian filter. Moreover,

the relevant stronger results, �-GLMB filter, which can be

directly used to multi-target tracking, can not only produce

trajectories formally but also outperform the PHD/CPHD

and MB filters. Later, [22] and [27] respectively proposed

two efficient approximations of �-GLMB filter, i.e., labelled

multi-Bernoulli (LMB) filter and Marginalized �-GLMB (M�-
GLMB) filter, where LMB filter approximates the �-GLMB

posterior as its first-order statistical moment matched MB

distribution, while M�-GLMB filter preserves both first-order

moment and cardinality distribution of the �-GLMB posterior.

Due to the advantages of labelled set filters, it is really

meaningful to investigate their generalization to the distributed

environment. In [26], authors derived the closed-form solutions

of GCI fusion with M�-GLMB and LMB posteriors which

are, however, based on the assumption that the label spaces of

each sensors are matching making it somewhat restrictive in
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real applications.

In this paper, we are devoted to study on the robust dis-

tributed fusion method for labelled set filters, especially for the

GLMB filter family including GLMB, �-GLMB M�-GLMB,

and LMB filters. Our analyses show that the label spaces of

each sensors are always mismatching in the sense that the same

realization drawn from label spaces of different sensors does

not have the same implication in practical scenarios, which is

referred to as “label space mismatching” phenomenon. More-

over, when this phenomenon arises, it may be unreasonable in

theory and a lack of robustness in practice if the fusion is

still performed directly on the space augmented with target

label. To solve this problem, two promising thoughts can be

employed. One is that match the label spaces of different

sensors first through some means and then perform fusion

on labelled state space. Another is that get the unlabelled

posteriors of different sensors first and perform fusion on

unlabelled state space then. This paper mainly focuses on the

latter, and the major contributions of our work are three-fold:

i) We propose a robust fusing strategy for distributed fusion

with labelled set posteriors which can get rid of the bad

influence of “label space mismatching” phenomenon. The

strategy is to transform the labelled set posteriors to its

unlabelled versions, and then perform GCI fusion with

the unlabelled versions of posteriors.

ii) We derive the mathematic representations of the unla-

belled versions of common labelled set distributions in

GLMB family, and prove that they all belong to the

same (unlabelled) RFS family, named as generalized

multi-Bernoulli (GMB) family. These derivations are pre-

conditions for the distributed fusion with labelled set

posteriors in GLMB family, according to the proposed

fusing strategy.

iii) We derive the explicit formula for the GCI with GMB

distributions through two-step approximation, which en-

ables the distributed fusion with GLMB filer family. The

first step is to approximate the GMB distributions using

its first-order statistical moment matched MB distributions

[7], and the second is to derive the formula for EMD of

approximated MB distributions using another reasonable

approximation. The fused distribution which turns out

to be another GMB distribution, can not only make the

formula of universal GCI fusion tractable, but also enable

the sequential fusion with sensor network which owns

more than two sensors.

In numerical results, Gaussian mixture (GM) implementa-

tion of the proposed algorithm for point observation model

verifies the robustness and effectiveness of the proposed fusing

strategy for distribution fusion with labelled set filters and the

derived formula for GCI with GMB distributions.

II. BACKGROUND

A. Notation

In this paper, we inhere the convention that single-target

states are denoted by the small letter “x”, e.g., �,x and

the multi-target states are denoted by capital letter “X”, e.g.,

�,X. To distinguish labelled states and distributions from the

unlabelled ones, bold face letters are adopted for the labelled

ones, e.g., x, X, �. Observations generated by single-target

states are denoted by the small letter “z”, i.e., �, and the multi-

target observations are denoted by capital letter “Z”, i.e., �.

Moreover, blackboard bold letters represent spaces, e.g., the

state space is represented by �, the label space by �, and the

observation space by ℤ. The collection of all finite sets of �

is denoted by ℱ(�) and ℱ�(�) denotes all finite subsets with

� elements.

The labelled single target state x is constructed by augment-

ing a state � ∈ � with a label ℓ ∈ �. The labels are usually

drawn form a discrete label space, � = {�� : � ∈ ℕ}, where

all �� are distinct and the index space ℕ is the set of positive

integers.

The multi-target state � , the labelled multi-target state X

and the multi-target observation � are modelled by the finite

set of single-target states, the finite set of labelled single-target

states, and the finite set of observations generated by single-

target states, respectively, i.e.,

� ={�1, ⋅ ⋅ ⋅ , ��} ⊂ �

X ={x1, ⋅ ⋅ ⋅ ,x�} ⊂ �× �

� ={�1, ⋅ ⋅ ⋅ , ��} ⊂ ℤ

(1)

Also notice that the labelled multi-target state is an RFS on

�×� with distinct labels. The set of labels of a labelled RFS

� is given by ℒ(X) = {ℒ(x) : x ∈ X}, where ℒ : �×� → �

is the projection defined by ℒ((�, ℓ)) = ℓ. The distinct label

indicator

△(X) = �∣X∣(∣ℒ(X)∣) (2)

is used to ensure distinct labels.

We use the multi-target exponential notation

ℎ� ≜
∏

�∈�

ℎ(�) (3)

for real-valued function ℎ, with ℎ∅ = 1 by convention.

To admit arbitrary arguments like sets, vectors and integers,

the generalized Kronecker delta function is given by

�� (�) ≜

{
1, if� = �
0, otherwise

(4)

and the inclusion function is given by

1� (�) ≜

{
1, if� ⊆ �
0, otherwise

(5)

B. Multi-target Bayesian filter

Finite Set Statistics (FISST) proposed by Mahler, has pro-

vided a rigorous and elegant mathematical framework for the

multi-target detection, tracking and classification problem in

an unified Bayesian paradigm.

In the FISST framework, the optimal multi-target Bayesian

filter 1 propagates RFS based posterior density ��(��∣�
1:�)

1Note that the Multi-target Bayesian filter in (6) and (7) is also appropriate
for the labelled set posterior, and the labelled set integrals defined as [20] are
involving.
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conditioned on the sets of observations up to time �, �1:�, in

time with the following recursion [7]:

��∣�−1(��∣�
1:�−1)

=

∫
��∣�−1(��∣��−1)��−1(��−1∣�

1:�−1)���−1

(6)

��(��∣�
1:�) =

��(��∣��)��∣�−1(��∣�
1:�−1)∫

��(��∣��)��∣�−1(��∣�1:�−1)���

(7)

where ��∣�−1(��∣��−1) is the multi-target Markov transition

function and ��(��∣��) is the multi-target likelihood function

of ��, and
∫
⋅�� denotes the set integral [7] defined by

∫
�(�)��=�(∅) +

∞∑

�=1

∫
�({�1, ⋅ ⋅ ⋅ , ��})��1 ⋅ ⋅ ⋅ ��� (8)

C. GCI Fusion Rule

The GCI was proposed by Mahler specifically to extend

FISST to distributed environments [9]. Consider two nodes 1
and 2 in the sensor network. At time �, each nodes maintain

its own local posteriors �1(�∣�1:�
1 ) and �2(�∣�1:�

2 ) which

are both the RFS based densities. Under the GCI 2 proposed

by Mahler, the fused distribution is the geometric mean, or the

exponential mixture of the local posteriors [2],

��(�∣�1:�
1 , �1:�

2 ) =
�1(�∣�1:�

1 )�1�2(�∣�1:�
2 )�2

∫
�1(�∣�1:�

1 )�1�2(�∣�1
2 )

�2��
(9)

where �1, �2 (�1 + �2 = 1) are the parameters determining

the relative fusion weight of each distributions. (9) is derived

by following that the distribution that minimizes the weighted

sum of its Kullback-Leibler divergence (KLD) with respect to

a given set of distributions is an EMD, e.g.,

�� = argmin
�

(�1�(� ∥ �1) + �2�(� ∥ �2)) (10)

where � denotes the KLD.

D. GLMB Family

The subsection provides a brief review of a series of

common labelled set distributions, i.e., GLMB, �-GLMB, M�-
GLMB and LMB distributions, in GLMB family. The GLMB

family is necessary for the results of this paper.

1) GLMB: A generalized labelled multi-Bernoulli (GLMB)

RFS [21] is a labelled RFS with state space � and (discrete)

label space � distributed according to

�(X) = △(X)
∑

�∈ℂ

�(�)(ℒ(X))[�(�)]X (11)

where ℂ is a discrete index set, �(�)(�) and �(�) satisfy
∑

�⊆�

∑

�∈ℂ

�(�)(�) = 1

∫
�(�)(�, ℓ)�� = 1

(12)

2Note that GCI fusion rule in (9) is also appropriate for the labelled set
posterior, and the labelled set integrals defined as [20] are involving.

2) �-GLMB: A �-generalized labelled multi-Bernoulli (�-
GLMB) RFS [21] is a special case of a GLMB with

ℂ ≜ ℱ(�)× Ξ

�(�)(�) = �(�,�)(�) ≜ �(�,�)��(�)

�(�) = �(�,�) ≜ �(�)
(13)

i.e. it is distributed according to

�(X) = △(X)
∑

(�,�)∈ℱ(�)×Ξ

�(�,�)��(ℒ(X))[�(�)]X
(14)

where Ξ is a discrete space, each �(�)(⋅, ℓ) is a probability

density, and each �(�)(�) is non-negative with
∑

(�,�)∈ℱ(�)×Ξ

�(�)(�) = 1 (15)

3) M�-GLMB: A Marginalized �-GLMB (M�-GLMB) den-

sity � corresponding to the �-GLMB density of form (14) is

a probability density of form

�(X) = △(X)
∑

�∈ℱ(�)

��(ℒ(X))�(�)
[
�(�)

]X
(16)

where

�(�) =
∑

�∈Ξ

�(�,�)
(17)

�(�)(�, ℓ) = 1�(ℓ)
1

�(�)

∑

�∈Ξ

�(�,�)�(�)(�, ℓ) (18)

Notice that the M�-GLMB is also a special case of GLMB

with

ℂ ≜ ℱ(�)

�(�)(�) = �(�)��(�)

�(�)(�, ℓ) = �(�)(�, ℓ)

(19)

4) LMB: A labelled multi-Bernoulli (LMB) RFS X [24]

with state space �, label space � and (finite) parameter set

{(�ℓ, �ℓ(�)) : ℓ ∈ �}, is distributed according to

�(X) = △(X)�(ℒ(X))�X (20)

where

�(�) =
∏

�∈�

(1− ��)
∏

ℓ∈�

1�(ℓ)�
ℓ

1− �ℓ

�(�, ℓ) = �ℓ(�)

(21)

III. DISTRIBUTED FUSION WITH LABELLED SET

POSTERIORS

Motivated by the advantages of labelled set filters, in this

section, we are going to investigate their generalization to the

distributed environment.

It is similar to the multi-target Bayesian filter that the uni-

versal GCI formula in (9) is also computationally intractable

in general for the integral in (9) is not the integral in the

conventional sense but rather a set-integral that integrates over
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all joint target-spaces, considering each cardinality (number of

targets). Fortunately, when local posteriors are in convenient

mathematical representations, such as possion processes, it is

promising to obtain the tractable type of fused posteriors. In

[26], authors derived the closed-form solution of GCI fusion

with M�-GLMB and LMB posteriors, which can be used to the

distributed fusion with M�-GLMB and LMB filters. However,

the fusion method in [26] is based on the assumption that the

label spaces of each sensors are matching, making it somehow

restrictive in real applications.

A. “Label Space Mismatching” Phenomenon

Consider two nodes 1 and 2 in a distributed fusion network.

Each nodes have received its own sensor information and

maintain its own posteriors �1(X∣Z1:�
1 ) defined on ℱ(�×�1)

and �2(X∣Z1:�
2 ) defined on ℱ(� × �2), where �1 and �2

denote the label spaces of sensors 1 and 2, respectively. The

straightforward method of distributed fusion which is adopted

in [27] is that assume �� = �1 = �2, substitute these two

labelled posteriors to (9) directly, and perform GCI fusion on

space ��. However, this method will be unreasonable in theory

if “label space mismatching phenomenon” arises.

“Label space mismatching” phenomenon means that the

same realization drawn from the different label spaces may

not have the same implication and thus cannot represent the

same trajectory. For instance, a realization � belongs to the

label space �1 and �2 at the same time, however, � ∈ �1

represents the different trajectory with � ∈ �2.

“Label space mismatching” phenomenon is very common

in practical scenarios. We analyse this from two aspects, two

widely used track initiation approaches.

i) Observation oriented birth process: New-born targets are

based on the observations not associated to the persisting

targets. The observation sets provided by different sensors

incorporate noisy observations of targets, stochastic miss-

detections of targets, and stochastic clutters, as a result,

it cannot guarantee the matching of label spaces from

different sensors.

ii) Known location oriented birth process: New-born targets

are based on the known locations about which different

sensors have reached a consensus. The label space may be

matching for the first few time steps, however, once some

tracks deviate by the influence of clutters, or are truncated

during to successive miss-detections, the matching of

different sensors’ tracks evolved from the same birth will

be invalid.

In a word, for either birth processes, to ensure the matching

of label spaces of each sensors, an ideal detecting environment,

in which each sensor does not have miss-detections and

clutters, and the estimate accuracy of each sensor is enough

high, is required. However, it is not realistic in practice, thus

“label space mismatching” is a common phenomenon.

When the “label space mismatching” phenomenon happens,

if we still insist on performing fusion on space �×�� , the fus-

ing performance will dramatically decrease and even collapse

entirely. Suppose that the posteriors of sensors 1 and 2 are

LMB distributions of form (20), i.e., �� = {(�ℓ�, �
ℓ
�(�))}ℓ∈��

on space � × ��. Assume that �1 = �2 = {�1, �2}. The

parameters for LMB posteriors of each sensor are shown as:

��1

1 = 0.92, ��1

1 (�) = � (�; 0, 1)

��2

1 = 0.90, ��2

1 (�) = � (�; 10, 1.3)

��1

2 = 0.95, ��1

2 (�) = � (�; 10, 1.1)

��2

2 = 0.98, ��2

2 (�) = � (�; 0, 1.5)

(22)

Based on the solution of the GCI fusion with LMB posteriors

derived in [27], the fused posterior is also a LMB distribution,

�� = {(�ℓ�, �
ℓ
�)}ℓ∈��

, where

��1

� = 0.0010, ��1

� (�) = � (�; 4.7619, 1.0476)

��2

� = 0.0028, ��2

� (�) = � (�; 5.3571, 1.3929)
(23)

It seems that these two sensors share the same label space,

however, these two label spaces are not matching. Actually, the

label �1 in �1 represents the same target as the label �2 in �2.

Hence, the fusion results (23) are completely insignificance

with the existence probability tiny.

B. Robust Strategy for Distributed Fusion with Labelled set

Posteriors

Now that the mismatching between label spaces of different

sensors may arise such serious fusing problem as analysed

in subsection III-A, in this subsection, we propose a novel

strategy of distributed fusion with labelled set posteriors to

get rid of the bad influence of “label space mismatching”

phenomenon. The strategy is that the GCI fusion will not

performed on space � × �� , but performed on space �,

the kinematic state space shared by all sensors. To carry out

this strategy, the labelled set posteriors are transformed to

the unlabelled versions firstly and the EMD of unlabelled

posteriors are computed using (9).

IV. THE UNLABELLED VERSIONS OF GLMB FAMILY

In the following, we primarily study on the distributed

fusion with GLMB family posteriors, which are used in the

GLMB filter family including GLMB �-GLMB, M�-GLMB

and LMB filters, according to the proposed strategy in Section

III-B. This section provides the mathematics representations

for the unlabelled versions of distributions in GLMB family,

which also belong to the same (unlabelled) RFS family, named

as generalized multi-Bernoulli (GMB) family. The relevant

results are summarized in Propositions 1-4.

Definition 1. A generalized multi-Bernoulli (GMB) RFS is an

RFS with state space � distributed according to

�({�1,⋅ ⋅ ⋅, ��})=
∑

�

∑

(ℐ,�)∈ℱ�(�)×Φ

�(ℐ,�)
�∏

�=1

�(�),ℐ
�(�)(��(�))

(24)

where the summation
∑

� is taken over all permutations on

the numbers 1, ⋅ ⋅ ⋅ , �, Φ is a discrete space, � is the index set
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of densities, ℐ� ∈ �
∣ℐ∣ is a vector constructed by sorting the

elements of the set ℐ, �(ℐ,�) and �(�),�(�) satisfy
∑

ℐ∈ℱ(�)

∑

�∈Φ

�(ℐ,�) = 1

∫
�(�),�(�)�� = 1, � ∈ �

(25)

A GMB distribution is constructed by a set of hypotheses,

{(ℐ, �) : (ℐ, �) ∈ ℱ(�)×Φ}. We define a set of densities for

each � ∈ Φ as:

�
(�) = {�(�),�(�)}�∈� (26)

Under each hypothesis, the corresponding weight is �(ℐ,�)

and the corresponding density set is �
(�). Thus a GM-

B is completely characterized by the set of parameters

{�(ℐ,�),�(�) : (ℐ, �) ∈ ℱ(�) × Φ}. Notice that the number

of �(ℐ, �) and �
(�) which need to store and compute is

∣ℱ(ℐ)× Φ∣ and ∣Φ∣, respectively.

The unlabelled version of a labelled RFS on �×� is given

by �(�) = {�(x) : x ∈ X}, where � : � × � → � is the

projection defined by �((�, ℓ)) = �.

Lamma 1. If a labelled RFS X is distributed according to �,

then � = �(X) is distributed according the marginal [20]

�({�1,⋅ ⋅ ⋅, ��})=
∑

(ℓ1,...,ℓ�)∈��

�({(�1, ℓ1),⋅ ⋅ ⋅, (��, ℓ�)}) (27)

Proposition 1. If a labelled RFS X on �×� is a GLMB RFS

distributed according to (11), then � = �(X) is distributed

as

�({�1, . . . , ��}) =
∑

�

∑

(�,�)∈ℱ�(�)×ℂ

�(�,�)
�∏

�=1

�(�),�
�(�)(��(�))

(28)

where

�(�,�) ≜ �(�)(�), � ∈ ℱ(�)

�(�),ℓ(�) ≜ �(�)(�, ℓ), ℓ ∈ �
(29)

Proposition 1 explicitly describes the relationship between

the parameters of GLMB and the parameters of its unlabelled

version. It is obvious that the unlabelled version of GLMB is

a GMB with � = � and Φ = ℂ.

Proposition 2. If a labelled RFS X on �×� is a �-GLMB RFS

distributed according to (14), then � = �(X) is distributed

as:

�({�1, . . . , ��}) =
∑

�

∑

(�,�)∈ℱ�(�)×Ξ

�(�,�)
�∏

�=1

�(�),�
�(�)(��(�))

(30)

where

�(�),ℓ(�) ≜ �(�)(�, ℓ), ℓ ∈ � (31)

Proposition 2 explicitly describes the relationship between

the parameters of �-GLMB and the parameters of its unla-

belled version. It is obvious that the unlabelled version of

�-GLMB is a GMB with � = � and Φ = Ξ.

Proposition 3. If a labelled RFS X on � × � is a M�-
GLMB RFS distributed according to (16), then � = �(X)
is distributed as:

�({�1, . . . , ��})

=
∑

�

∑

(�′,�)∈ℱ(�)×ℱ(�)

�(�)��(�
′)

�∏

�=1

�(�),�
�(�)(��(�))

=
∑

�

∑

�∈ℱ(�)

�(�)
�∏

�=1

�(�),�
�(�)(��(�))

(32)

where

�(�),ℓ(�) ≜ �(�)(�, ℓ), ℓ ∈ � (33)

Proposition 3 explicitly describes the relationship between

the parameters of M�-GLMB and the parameters of its un-

labelled version. It is obvious that the unlabelled version of

�-GLMB is a GMB with � = � and Φ = ℱ(�).

Proposition 4. If a labelled RFS X on �×� is a LMB RFS

distributed according to (20), then � = �(X) is distributed

as:

�({�1, ⋅ ⋅ ⋅ , ��}) =
∑

�

∑

�∈ℱ�(�)

�(�)
�∏

�=1

��
�(�)(��(�)) (34)

where

�(�) ≜ �(�), � ∈ ℱ(�)

�ℓ(�) ≜ �(�, ℓ), ℓ ∈ �
(35)

Proposition 4 explicitly describes the relationship between

the parameters of LMB and the parameters of its unlabelled

version. It is obvious that the unlabelled version of LMB is

a GMB with � = � and the discrete space Φ only has one

point. Notice that (34) is a MB s with a set of parameters

{�ℓ, �ℓ(�)}ℓ∈� in nature.

V. GCI WITH GMB DISTRIBUTIONS

Once the labelled set posteriors in GLMB family are

marginalized to the GMB distributions based on propositions

1-4, the task of distributed fusion based on GCI rule turns to

computing the EMD of GMB distributions, according to the

proposed fusing strategy. Actually, a manipulatable formula

for EMD of RFS distributions has two implicit demands: one

is that the formula should have a convenient mathematical

representation making the computation of (9) tractable; the

other is that the fused distribution should belong to the same

family of local posteriors or its unlabelled versions, in order to

enable the sequential fusion with senor network owing more

two nodes. In this section, we are devoted to derive explicit

formula for EMD of GMB distributions, in line with the idea

to satisfy these two demands.
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A. Two-step Approximation

Consider two GMB distributions �� of form (24) , � = 1, 2.

These are the unlabelled versions of posteriors output by two

local filters in GLMB filter family in a network. Omitting the

conditioning on the observations for convenience,

��({�1, ⋅ ⋅ ⋅ , �2}) =

∑

�

∑

(ℐ,�)∈ℱ�(��)×Φ�

�(ℐ,�)
�

�∏

�=1

�(�),ℐ
�(�)

� (��(�)), � = 1, 2

(36)

If we directly substitute (36) into (9), we are faced with a

tough problem of simplifying the term,

(��)
�� =

⎛
⎝
∑

�

∑

(ℐ,�)∈ℱ�(��)×Φ�

�(ℐ,�)
�

�∏

�=1

�(�),ℐ
�(�)

� (��(�))

⎞
⎠

��

(37)

It is really intractable to compute (37). Hence, in this paper, we

try to change the train of thought. We will not substitute GMB

distributions into (9) directly, but approximate it using a more

tractable expression, i.e., the first moment matched MB distri-

bution in the first place. Then we derive the explicit formula

for EMD of the first moment matched MB distributions using a

reasonable approximation. As the fused distribution is another

GMB distribution, it can enable the distributed fusion with

GLMB filter family even with more than two sensors in the

sensor network. The two-step approximation in the derivation

of EMD of GMB distributions is summarized in Propositions

5 and 6.

Proposition 5. The MB distribution that matches exactly the

first-order moment of GMB distribution ��(�) in (36), is

�̃�(�) = {(�̃ �� , �̃
�
�(�)}�∈�� , where

�̃ �� =
∑

ℐ∈ℱ(��)

∑

�∈Φ�

1ℐ(�)�
(�,ℐ)
�

�̃ �
�(�) =

1

�̃��

∑

ℐ∈ℱ(��)

∑

�∈Φ�

1ℐ(�)�
(�,ℐ)
� �(�),�� (�)

(38)

Without loss of generalization, assume that ∣�1∣ ≤ ∣�2∣. The

following gives the definition of a fusion map.

Definition 2. A fusion map (for the current time) is a function

� : �1→�2 such that �(�)=�(�∗) implies �= �∗, The set of all

such fusion maps is called fusion map space denoted by � .

The subset of � with domain ℐ is denoted by � (ℐ).

Proposition 6. The EMD of the two MB distributions in (38),

��(�) can be approximated as a GMB distribution of the

form

��({�1, . . . , ��}) =∑

�

∑

(ℐ,�)∈ℱ�(�1)×� (ℐ)

�(ℐ,�)
�

∏�

�=1
�(�),ℐ

�(�)
� (��(�)) (39)

where

�(ℐ,�)
� =

∏
�∈ℐ

∫ (
�̃ �1 �̃

�
1(�)

1− �̃ �1

)�1

(
�̃
�(�)
2 �̃

�(�)
2 (�)

1− �̃
�(�)
2

)�2

�� (40)

� =

∑

(ℐ,�)∈ℱ(�1)×� (ℐ)

�
(ℐ,�)

(41)

�(ℐ,�)
� = �(ℐ,�)

� /� (42)

�(�),�� (�) =
�̃ �
1(�)

�1 �̃
�(�)
2 (�)�2

∫
�̃ �
1(�)

�1 �̃
�(�)
2 (�)�2��

, � ∈ �1 (43)

Proof. Substituting (38) in the term �̃�(�)� , we obtain

�̃�({�1,. . .,��})
�� =

⎛
⎝�̃�

∑

�

∑

ℐ∈ℱ�(��)

�∏

�=1

�̃ℐ�(�)
� (��(�))

⎞
⎠

��

(44)

where

�̃� =
∏

�∈��

(1− �̃ �� ) , �̃ �
� (�) =

�̃ �� �̃
�
�(�)

1− �̃ ��
(45)

Motivated by [5], [28], we use the approximation(
∑

�

��

)�

≈
∑

�

��� (46)

and (44) can be written as

�̃�({x1,. . .,x�})
�� ≈ �̃��

�

∑

�

∑

ℐ∈ℱ�(��)

�∏

�=1

�̃ℐ�(�)
� (��(�))

��

(47)

Then substituting (47) into the numerator of (9) and utilizing

Definition 2, we obtain

�̃1({�1, ⋅ ⋅ ⋅ , �2})
�1 �̃2({�1, ⋅ ⋅ ⋅ , �2})

�2
/(
�̃�1

1 �̃
�2

2

)

=
∑

�

∑

ℐ∈ℱ�(�1)

∑

�∈� (ℐ)

�∏

�=1

�̃
ℐ�(�)
1 (��)

�1

�̃
�(ℐ�(�))
2 (��(�))

�2

=
∑

�

∑

ℐ∈ℱ�(�1)

∑

�∈� (ℐ)

�(ℐ,�)
�

�∏

�=1

�(�),ℐ
�(�)

� (��(�))

(48)

Thus the denominator of (9) can be computed as:
∫
�1({�1,⋅ ⋅ ⋅, �2})

�1�2({�1,⋅ ⋅ ⋅, �2})
�2
/(
�̃�1

1 �̃
�2

2

)
��

=
∞∑

�=0

∑

ℐ∈ℱ�(�1)

∑

�∈� (ℐ)

�(ℐ,�)
�

=
∑

ℐ∈ℱ(�1)

∑

�∈� (ℐ)

�(ℐ,�)
�

(49)

Finally, substituting (48) and (49) into (9), we obtain the fused

density as the form of (39).

Remark: The approximation in (47) seems reasonable

whenever the cross-products in (44) are negligible; this,

in turn, holds provided that the means
∫
��̃ �

�(�)�� and∫
��̃ �′

� (�)��, � ∕= �′, are well separated, as measured by the re-

spective covariances. This condition can be met when different

258



hypothesized tracks described by �̃ �
�(�) are not closely spaced

by measuring its kinematic parameters such as position and

velocity. Our simulation results in [19] have shown that the

required minimum distance between each tracks is about 2∼3

resolution cells which can be easily satisfied in most scenarios,

shown as our empirical data.
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Fig. 1. (a) shows the �
(1)
1 (x1) and �

(2)
1 (x2); (c) shows the

�
(1)
1 (x1)�

(2)
1 (x2) and �

(1)
1 (x2)�

(2)
1 (x1); (b) and (d) are the corresponding

cross-products respectively.

For example, consider an MB distribution of form (38)

with parameters meeting the condition mentioned above and

denoted as �1 = {��1, �
�
1(�)}

2
�=1, where �11 = 0.8 and

�21 = 0.9; �11(�) ∼ � (�, 5; 0.2) and �21(�) ∼ � (�, 7; 0.2)
with � ∈ ℝ. The cross-products when � = 1 and � = 2
of (44) are shown in Fig.1 respectively. It can be seen that

the maximums of cross-products are such low that they are

negligible.

B. Summary and Discussions

In previous sections, we proposed a novel strategy for

distributed fusion with labelled set posteriors. The labelled set

posteriors are marginalized to its unlabelled versions firstly

in order to avoid the problem arising from “label space mis-

matching” phenomenon. Propositions 1-4 give the mathematic

representation of unlabelled versions of GLMB family and

show that all these unlabelled distributions belong to the GMB

family. Hence, the task of the distributed fusion with GLMB

family posteriors turns to the GCI fusion with GMB posteriors.

In this section, Propositions 5 and 6 provide the explicit

formula for EMD of GMB posteriors and the fused posterior

is also another GMB distribution. Thus the derived formula

enables the distributed fusion with GLMB filter family over

a sensor network owing more than two nodes. Fig. 2 shows

the relationship between distributed fusion with GLMB filter

family.

VI. PERFORMANCE ASSESSMENT

In this section, the performance of the proposed GCI with

GMB distributions (GCI-GMB) is examined in terms of the

optimal sub-pattern assignment (OSPA) error [29]. We adopt

-GLMB
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LMB
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Closed-form 
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Approximating
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Fig. 2. The relationship between distributed fusion with GLMB filter family

GM implementations for the GCI-GMB fusion over distributed

networks and the parameter � in (9) is chosen as 0.5. All

performance metrics are averaged over 200 Monte Carlo runs.

The following target and observation models are used. The

target state variable is a vector of plannar position and veloc-

ity �� = [��,�, ��,�, �̇�,�, �̇�,�]
� . The single-target transition

model is linear Gaussian specified by

F� =

[
I2 ΔI2
02 I2

]
,Q� = �2�

[
1
4I2

1
2ΔI2

1
302 I2

]

where I� and 0� denote the �×� identity and zero matrices,

Δ = 1s is the sampling period, and �� = 0.63�/�2 is

the standard deviation of the process noise. The probability

of target survival is ��,� = 0.98; The probability of target

detection in each sensor is independent of the probability of

detection at all sensors and is �� = 0.95. The single-target

observation model is also a linear Gaussian with

H� =
[
I2 02

]
,R� = �2�I2,

where �� = 1.4�, is the standard deviation of the measure-

ment noise. The number of clutter reports in each scan is

Poisson distributed with � = 10. Each clutter report is sampled

uniformly over the whole surveillance region.

A. Scenario 1

To assess the robustness of the proposed GCI-GMB fusion

algorithm, we compare it with the GCI with LMB filter (GCI-

LMB) [26] under two assumptions:

A.1. the label spaces of birth processes for each local filters

are matching, i.e.,

(�1Γ,1, �
1
Γ,1)

�� (�, �) �� (�2Γ,1, �
2
Γ,1)

(�1Γ,2, �
1
Γ,2)

�� (�, �) �� (�2Γ,2, �
2
Γ,2)

A.2. the label spaces of birth processes for each local filters

are mismatching, i.e.,

(�2Γ,1, �
2
Γ,2)

�� (�, �) (�2Γ,1, �
2
Γ,2)

������

(�2Γ,1, �
2
Γ,2)

�� (�, �) (�2Γ,2, �
2
Γ,2)

�������

where � = � = 0.01, �(�) = � (�;�,� ),
�(�) = � (�;�,� ), � = [250, 800, 12,−20]� , � =
[650, 200, 10, 20]� ,� = � = ����([800, 800, 25, 25]� )2.
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We consider a scenario involving two targets on a two di-

mensional surveillance region [0, 1000]�× [0, 1000]� shown

in Fig. 3 (a). For both fusion algorithms, the local filters are

chosen as the LMB filters.
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Fig. 3. (a) The scenario of distributed sensor network with two sensors
tracking two targets, (b) the average OSPA errors under different assumptions.

Fig. 3 (b) shows the average OSPA errors for the GCI-

GMB fusion and the GCI-LMB fusion under assumptions A.1

and A.2. Notice that GCI-GMB fusion is performed on the

unlabelled state space and thus is independent of assumptions

A.1 and A.2. It can be seen that the performance of GCI-

GMB algorithm is almost at the same level with GCI-LMB

algorithm under A.1, while GCI-LMB algorithm under A.2

complete collapse. According to the analysis in section III-A,

in practical scenarios, “label space mismatching” phenomenon

is very common. Thus, the performance of GCI-LMB will

have considerable uncertainty and risk in practice. On the

contrary, the proposed GCI-GMB algorithm is much more

robust to accommodate the unknown relationship between

each label spaces.

B. Scenario 2

In this scenario, the performance of the GCI-GMB fusion

is compared to the GCI with PHD filter (GCI-PHD) proposed

in [4]. A sensor network scenario involving four targets which

appear at different time steps is considered as shown in Fig.

3. The local filters are chosen as PHD filter for GCI-PHD

fusion, and the �-GLMB filter for GCI-GMB fusion. In this
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Fig. 4. The scenario of distributed sensor network with three sensors tracking
four targets.

sensor network, each sensors have same quality and can only

exchange posteriors with its neighbours. Specifically, both

sensors 1 and 3 perform fusion of two posteriors from sensor

2 and the local filter, while sensor 2 performs fusion of three

posteriors from sensor 1, sensor 3 and the local filter by

sequentially applying the pairwise fusion (38) and (39) two

times.

Figs. 5 (a) and (b) show the cardinality estimations of GCI-

GMB fusion and GCI-PHD fusion for sensor 2, respectively.

It can be seen that the cardinality estimation of GCI-GMB

fusion is more accurate and exhibits much smaller covariance

than GCI-PHD fusion.

The average OSPA errors shown in Fig. 6 illustrates the

performance difference between the GCI-GMB and GCI-PHD

fusion algorithms for sensor 2. It can be seen from Fig. 6 that
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Fig. 5. (a) Cardinality statistics for GCI-GMB, (b) Cardinality statistics for
GCI-PHD.
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Fig. 6. Performance comparison, using average OSPA error, between GCI-
GMB and GCI-PHD.

the proposed GCI-GMB fusion performs significantly better

than GCI-PHD fusion over total time. The track initiations

are much faster when new targets born at time step 6 and 16.

Also, when the performances reach stable, the OSPA errors

of GCI-GMB fusion is much more lower than GCI-PHD

fusion algorithm. The results also demonstrate implicitly that

the approximations used in the derivation of EMD of GMB

distributions are reasonable.

Table I shows the performance comparisons between local

filter, two and three sensors for GCI-GMB fusion in terms

of averaged OSPA errors over 18th∼30th frames and 200

Monte Carlo runs. The results demonstrate that more number

of sensors contributing to the fusion, the smaller estimation

errors are.
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TABLE I
AVERAGE OSPA ERRORS vs NUMBER OF SENSORS

Number of sensor One Two Three

OSPA Errors(m) 1.9416 1.5015 1.4124

VII. CONCLUSION

In this paper, we addressed the problem of the distributed

multi-target tracking with labelled set filters based on gener-

alized Covariance Intersection (GCI). Firstly, we proposed a

robust strategy for distributed fusion with labelled set posteri-

ors to get rid of the bad influence of “label space mismatching”

phenomenon. Secondly, we derived the unlabelled versions

of common labelled set distributions in generalized labelled

multi-Bernoulli (GLMB) family and showed they all belong to

the generalized multi-Bernoulli (GMB) family. Thirdly, we de-

rived the explicit formula for the GCI with GMB distributions,

which enables the distributed fusion with GLMB filter family,

including the GLMB, �-GLMB, M�-GLMB and LMB filters.

Simulation results for Gaussian mixture implementation have

demonstrated the robustness and effectiveness of GCI with

GMB fusion algorithms in two challenging tracking scenarios.
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