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Abstract—In this paper, we present a method for the opti-
mal state estimation of a linear system, observed by various
dynamically schedulable and distributed sensors. We consider this
problem to be a problem of information fusion, where the infor-
mation is obtained from the sensors in exchange of scheduling
and sensor operational costs. Sensors over a distributed network
can work together efficiently in order to maximize the overall
network performance. We consider several costs related to sensor
scheduling such as the continuous cost for keeping the sensor on,
and sensor switching cost for turning a sensor on from off state
and vice versa. Our goal is to estimate the state as closely as
possible while minimizing the scheduling cost. We incorporate
the error in estimation as a cost in the optimization function.
The resultant problem is then converted into an optimal control
problem, where optimal scheduling is obtained by pointwise
maximizing the Hamiltonian of the system.

I. INTRODUCTION

The advancements in wireless sensor networks have made
a great impact on recent technological growth in large inter-
connected distributed systems. Sensor networks in a distributed
system consist of a family of sensors distributed over the space
to monitor physical and environmental conditions. With the
advancements in sensing and pervasive computing, the sensor
nodes in a sensor network not only monitor the system, but
they also communicate, fuse information, and oftentimes work
as decision makers.

Classical estimation theory estimates the state of a system
from given measurements by computing the posterior density
of the process state conditioned on the available measurements.
In a distributive setup the state estimate is done distributively
over the network. The distributive architecture often imposes
restrictions on the sensor measurements, data processing, and
communication when there are only limited network resources
available. The restrictions could be of the form that one sensor
can sense in different modes and the sensor scheduler can
choose only one such mode independently, or one can have
restrictions on the communication subsystem such as only a
single sensor can communicate at a given time slot, or there
could be situations where it is not possible to use multiple
sensors in the system such as systems using echo-based sensors
like ultrasonic sensors.

Sensor scheduling emerges as a problem of selecting some
of the sensors from a pool of available sensors. The optimality
in this scheduling is determined by the measurements obtained
from the sensors or the information retrieved from these
measurements and the cost incurred in that scheduling. In most
of the cases, fusion of the data emerging from multiple-sensors

is done with a hope to get a better estimate than that obtained
from the sensor with the least variance. In scheduling, we will
have the freedom to choose the right set of sensors at any time
and fuse the information in a proper way that will reduce the
error in estimation.

The optimal sensor scheduling problem for state estimation
and filtering has been an important research topic for a few
decades. Filtering for a nonlinear diffusion process has re-
ceived considerable attention [1], [2]. In the theory of nonlinear
diffusion processes, the state of a system is driven by the
nonlinear drift present within the system and a diffusion caused
by an additional Wiener process that is present in the dynamics
of the system [2]. Optimal scheduling has been studied as a
problem of optimal stopping time in [3]. [4] also considered a
state estimation problem with sensor scheduling; and the work
considered noise and uncertainty models which are assumed
to be unknown deterministic functions that satisfy energy type
constraints. In [5], the authors considered the optimal sensor
scheduling problem as a controlled hidden Markov model with
continuous state, observation and action spaces. Their approach
is simulation based where a stochastic gradient based algorithm
is used to generate the optimal scheduling. Another work [6]
from the same year considered a discrete time linear Gaussian
process and derived the periodicity policy in the situation
where the decision is whether the sensor should transmit
or not. [7] also considered a linear Gaussian system and
proposed a stochastic scheduling policy that is computationally
tractable. In a stochastic hybrid linear Gaussian setup [8]
proposed an algorithm for sensor scheduling. [9] proposed a
sensor scheduling and MAP state estimate approach for hidden
Markov models.

Recent works like [10] and [11] have modeled the data fu-
sion process in a sensor network as a trust based process. These
approaches estimate the state by taking convex combinations
of the measurements available at the sensor nodes. The weight
on each measurement is calculated based on the trust values.
Though these approaches can suppress the measurements from
noisy sensors by putting less weights on the measurements
obtained from them, they do not perform sensor scheduling.

In this paper, we investigate the sensor scheduling problem
for a continuous time linear Gaussian system in a more general
setup. We will consider the switching cost in our formulation.
Most of the previous methods have considered discrete time
which deal with time instances, however, scheduling in con-
tinuous time requires special care to carry on the analysis.

The rest of the paper is organized as follows: Section-II,
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formulates the general problem that we aim to solve, Section-
III provides basic tools to perform a change in probability
measure, Section-IV provides the pointwise necessary condi-
tion for an optimal scheduling policy. The simulation results
are shown in Section-V.

II. PROBLEM FORMULATION

Let us consider a linear quadratic Gaussian system whose
state is x(·) ∈ R

n and the dynamics of this system are given
in equation (1) below:

dx = Axdt+QdWt (1)

x(0) = x0

where the matrices A,Q are in general time varying and Wt

is a standard Wiener process. To maintain brevity, we will
not show the explicit time dependencies of any of the system
parameters in the following sections.

We have M sensors and their observations are described
in equation (2)

dyi = Hixdt+Ridv
i
t ∀i = 1, 2, · · · ,M (2)

yi(0) = 0

where Hi is a time varying matrix, observation yi ∈ R
di and

the noise vit is a Wiener process in R
di which is independent

of Wt. The matrices Q,Ri determine the variance of the state
x and the observation yi respectively. Note that the sensor
variance of the i-th sensor will be completely characterized by
the matrix Ri. We are interested in estimating some function
(ψ : R

n → R) of the state variable x at each time. For
our estimation, we have M available sensors but we are free
to choose any combination of them at any time. Let the

estimation be denoted by ψ̂(t). Our goal is to jointly select
the measurements to use and the estimation algorithm in such
a way that the error in estimation is minimized. Now, to choose
how to define the error in estimation, we consider the variance
of this estimation i.e. E(ψ(x(t)) − ψ̂(t))2. The goal will be
to minimize this variance subject to additional constraints
and considerations. It is true that for any two sensors with
same detectability, if one of the observations is less noisy or
equivalently if the sensor has smaller variance, the estimation
of that sensor will be better. The sensor measurements are the
information available to us for the estimation, and the value of
the information at time t is directly related to the reduction in
the estimation error that is due to the use of specific sensors
and of their measurements at time t.

In order to get the best estimate, we need to use all the
sensors but that will incur more cost. Since we are interested
in scheduling, it is clear that we will neither use all the sensors
at any specific time, nor the measurements from a specific
sensor at all times. Rather the sensors will be scheduled and
their measurements will be used in such a way that the estimate

ψ̂ will be satisfactory and the cost for operating these sensors
will be also minimized. In the cost of the sensors, we will
also consider the switching cost i.e. sensor activation and
deactivation costs. Let us denote the cost of operating sensor i
at time t and state x to be ci(t, x) and the cost of switching on
and off sensor i at time t and state x is si1(t, x) and si0(t, x)
respectively. Let u(t) be a binary vector that denotes the state
of the sensors at time t. ui(t) = 0 if sensor i is off and it

is 1 if sensor i is on. Since there are M sensors, precisely
N = 2M possible schedules can be there at any time. Let us
denote u(t) as a scheduling policy for our problem. The set
of all possible sensor configurations at any time is given by η.
For any ν ∈ η, we define a set Nν that contains the indexes
of ν which have the value 1, i.e. Nν = {j| νj = 1}. Let us
consider that at time t the scheduling is changed from ν to ν1
and hence the cost incurred by this action is given in equation
(3).

kνν1
(t, x) = Σ{j∈Nν}{j /∈Nν1}

sjo(t, x)+Σ{j /∈Nν}{j∈Nν1}
sj1(t, x)

(3)
On the other hand, the total cost for keeping the sensors on at
time t with the state as x and schedule ν is as follows:

Cν(t, x) = Σj∈Nν
cj(t, x) (4)

Our goal is to minimize the estimation error in estimation and
also minimize the cost due to the sensor scheduling. Therefore,
given the observations, the objective function we are set to
optimize is given by equation (5) below:

J(u, ψ̂) = E
[

∫ T

t=0

[(ψ(x(t))− ψ̂(t))2 + Cu(t, x(t))]dt+

Σjku(τj−1),u(τj)(t, x)χ(τj<T )

]

(5)

where τi is the time when at least one sensor has changed its
state. That is the time instances τi are the switching instances
in the sensor schedule.

Since the sensor schedule determines the observations
available at time t, we can write the available observations
as a function of the sensor schedule and that is represented in
equation (6).

dy(t, u(t)) = H(u(t))xdt+R(u(t))dv (6)

where H(u(t)) ∈ R
D×n and R(u(t)) ∈ R

D×D are the matri-
ces given in (7) and (8) respectively where D = d1 + · · · dM ,
and v is the standard D dimensional Wiener process.

H(u(t)) =















H1u1(t)
...

Hiui(t)
...

HMuM (t)















(7)

R(u(t)) =















R1u1(t) · · · 0 0
...
· · · Riui(t) · · · 0
...

...
...

...
0 · · · 0 RMuM (t)















(8)

If sensor i is not active at time t, the i-th row of H(u(t))
and R(u(t)) is identically zero and hence the measurement
is not available in the y(t, u(t)) vector. Note that we are
interested in performing estimation while at the same time
employing sensor scheduling as a technique to minimize the
cost in estimation. To keep our problem tractable in this paper
we will only consider ψ(x) = x, i.e. we are interested in
estimating the state itself. We will also consider that the sensor
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running costs and switching costs are only functions of time;
that is, we do not consider models where these costs depend
on the state x. More general models, following the general
framework of [3] will be considered elsewhere.

III. PRELIMINARIES

Let (Ω,F ,P) be a probability space where Ω is the
set of events, F is the σ-algebra formed by the elements
of Ω, and P is the probability measure. We denote the
σ−algebra generated by the process y(., u(.)) up to time t

as Fy(.,u(.))
t = σ(y(s, u(s)), s ≤ t). Clearly F (y(.,u(.)))

t is an
increasing sequence of σ-algebras.

For a diffusion process [12] given by (1), the infinitesimal
generator of that process is given by the operator L.

L = Σn
i,j=1(QQ

T )ij
∂2

∂xi∂xj
+Σn

i=1(Ax)i
∂

∂xi
(9)

The adjoint operator of this operator is given by L∗.

L∗(m) = Σn
i,j=1

∂2((QQT )ijm)

∂xi∂xj
− Σn

i=1

∂

∂xi
((Ax)im) (10)

The Fokker-Plank equation [12] for the unnormalized prob-
ability density µ(x, t) of the state x at time t, for the process
(1) satisfies the partial differential equation (11):

∂

∂t
(µ(x, t)) = L∗(µ(x, t)) (11)

If
∫

µdx = C 6= 1, then we take the normalized density to be
µ(x, t)/C.

Under observations, the unnormalized conditional distribu-
tion of the process x is given by the Zakai equation [13]:

dµ = L∗µdt+ µxTH(u(t))T dy(t, u(t)) (12)

The contents presented here will be needed to carry out the
expectation that is present in the cost functional.

IV. OPTIMAL SCHEDULING POLICY

In this section, we will mainly develop our theory for
optimal sensor scheduling and for that purpose, let us begin
with considering the process

v(t) = ξ(t)−
∫ t

0

R(u(s))−1H(u(s))x(s)ds (13)

where ξ is a standard Wiener process under the measure P .
Using Girsanov’s theorem to change probability measure [14],
we can say that v will be a standard Wiener process under the
measure Pu. The change of probability measure from P to
Pu is given by,

dPu

dP

∣

∣

∣

∣

Ft

= ζ(t) (14)

where ζ(t) is given by,

ζ(t) = exp
[

∫ t

0

(R(u(s))−1H(u(s))x(s))T dξ(s) (15)

− 1

2

∫ t

0

‖R(u(s))−1H(u(s))x(s)‖2ds
]

If ξ is a Wiener process that is independent of the process Wt

defined in (1), Wt remains a standard Wiener process under
this new measure Pu. The initial state, x0, of the process x is
independent of the process Wt and v; and as a consequence,
the probability measure of x does not change under this new
measure Pu. This change of probability measure is needed
to carry out the optimization since the cost functional contains
terms related to the process x and the estimate x̂ which is based
on the given measurements y(., u(.)). The process y(., u(.)) is
characterized under the probability measure Pu.

Therefore, considering the measure Pu and the invariance
of the probability laws of x under this measure, we can rewrite
the optimization problem as follows:

min
u(·),x̂(.)

Eu
[

∫ T

t=0

[(x(t)− x̂(t))2 + Cu(t)]dt+

Σjku(τj−1),u(τj)(t)χ(τj<T )

]

(16)

Consequently, (16) can be written as

min
u(·)

[

min
x̂(·)

Eu
[

∫ T

t=0

[(x(t)− x̂(t))2 + Cu(t)]dt+

Σjku(τj−1),u(τj)(t)χ(τj<T )

]

]

(17)

We also assume that the switching cost is always bounded
from below. Under this assumption, any admissible scheduling
u(·) can have only finite number of switchings (if the time
horizon [0, T ] is finite) otherwise the cost for a schedule with
infinite switchings will be infinite.

For any admissible schedule u(·), it is not hard to prove
that the estimate x̂(t) is the estimate of the Kalman filter which
minimizes the cost (19). Therefore, min

x̂(·)
Eu(x(t) − x̂(t))2 =

tr(P (t)), where tr(·) is the trace of a matrix and P (t) is the
covariance of the process x(t)−x̂(t). P (t) satisfies the Riccati
differential equation (18).

Ṗ = AP + PAT +QQT − PH(u(t))TR(u(t))−1H(u(t))P
(18)

P (t) depends on the choice of scheduling ut0 where ut0 =
{u(s)| 0 ≤ s ≤ t} and therefore it should be denoted as
P (t, ut0); but for brevity, in what follows next, we will denote
it as P (t), the dependence of P on scheduling u(·) is implicitly
assumed. Therefore, the optimization problem becomes,

min
u(·)

[

∫ T

t=0

[tr(P (t, ut0)) + Cu(t)]dt+

Σjku(τj−1),u(τj)(t)χ(τj<T )

]

(19)

Let us define a new function Kδ(t, u(t)) = δ(t)ku(t−),u(t)(t).
To see that this transformation exactly gives the switching cost,
let u(τj−1) = ν and u(τj) = ν1 and hence using u(τ−j ) = ν,

∫ τ+
j

s

Kδ(t, u(t))dt = k(ν,ν1)(τj)

where s ∈ (τj−1, τj ]. With this transformation, the discrete
cost at switching instances can be converted to an integral
cost. The cost in (19) can be rewritten as,

min
u(·)

∫ T

t=0

[tr(P (t)) + Cu(t) +Kδ(t, u(t))]dt (20)
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Since P is a matrix that satisfies the Riccati differential
equation (18), we can write the same system (18) as a scalar

nonlinear system in R
n(n+1)

2 as described by equation (21)
below:

q̇ = f(t, q, u) (21)

where q ∈ R
n(n+1)

2 , and the qis are the elements of the P
matrix (P being symmetric, we need only n(n+1)/2 elements
to uniquely represent it). Let us also define q̃ such that

˙̃q = L(t, q, u) q̃(0) = 0 (22)

where L = tr(P (t))+Cu(t)+Kδ(t, u(t)). Therefore, the cost
functional takes the form (23),

J(u(·)) = q̃(T ) (23)

Thus, we have converted the Lagrange optimization problem
into Mayer form [15].

Theorem IV.1. If u∗(.) is an optimal scheduling law and q∗

is the corresponding optimal trajectory, then there exists a
costate trajectory p(.) : [0, T ] → R

n(n+1)/2 such that

q̇∗ =
∂H
∂p

(t, q∗, u∗, p, p0) (24)

ṗ = − ∂H
∂q∗

(t, q∗, u∗, p, p0)

where H(t, q, u, p, p0) = pT f(t, q, u) + poL(t, q, u) and
H(t, q∗, u∗, p, p0) = max

u
H(t, q∗, u, p, p0)

Proof: To prove this, let us first define a new system η =

[q̃, qT ]T ∈ R
1+

n(n+1)
2 that satisfies the dynamics written in

equation (25)

η̇ =

[

L(t, q(t), u(t))
f(t, q(t), u(t))

]

= g(t, η(t), u(t)) (25)

If u(·) is an optimal scheduling law, the trajectory of the
system (21) i.e. q, can be reconstructed from the trajectory of
the higher dimensional system η by simply projecting it to the

proper
n(n+1)

2 dimensional subspace. It should also be noted
that any optimal scheduling law has to be piecewise constant
otherwise the cost in (19) will be infinite.

To check the optimality of the scheduling law, we will
perturb the system with slight variation in the control and
analyze its behavior. Since we are interested in piecewise
constant scheduling, we will introduce a small pulse in the
control law and see the effects caused by this perturbation.
This variation in scheduling law is given below in (26)

uw,I(t) =

{

u∗(t), if t /∈ I

w, if t ∈ I
(26)

where u∗(t) is the optimal scheduling for the sensors, and
the corresponding optimal trajectory generated is η∗. The
perturbation w ∈ U is an admissible control input and the
perturbation interval I is an interval of length aǫ with one
endpoint at b, i.e. I = [b− aǫ, b], where a > 0. Using simple
Taylor series expansion, as done in [16], one can easily find the
relation between the perturbed trajectory η(t) and the optimal
trajectory η∗ to be,

η(b) = η∗(b) + ∆g(b, w)ǫa (27)

where ∆g(b, w) = g(b, η∗(b), w) − g(b, η∗(b), u∗(b)). We are
interested to find the effects that this perturbation has on future
times i.e. t ≥ b. Let us denote

η(t) = η∗(t) + ǫφ(t) + o(ǫ) (28)

where o(ǫ)/ǫ → 0 as ǫ → 0 and φ(b) = ∆g(b, w)a. It is not
hard to show that φ(t) satisfies the differential equation (29)
with initial condition φ(b) = ∆g(b, w)a ( [16], Section 4.2.4),

φ̇ =

[

0 Lq(t, q
∗, u∗)T

0n×1 fq(t, q
∗, u∗)

]

φ (29)

where Lq = ∂L
∂q and fq = ∂f

∂q .

The solution to the system (29) is given by φ(t) = Φ(t, b)φ(b);
Φ(·, ·) is the state transition matrix of the system (29). Thus,
we get for any time t ≥ b,

η(t) = η∗(t) + aǫΦ(t, b)∆g(b, w) + o(ǫ) (30)

Therefore the perturbation in control has caused a perturbation
in the final state η(T ) by an amount aǫΦ(T, b)∆g(b, w). It is
clear that the direction of this perturbation depends only on the
values of b and w, and therefore, we define a ray −→ρ (b, w) to

denote the direction of this perturbation. We also let
−→
P denote

all possible such rays for different values of b and w. This set−→
P denotes a cone with vertex at η∗(T ) and in general this is
not a convex cone. By concatenating all possible perturbations,
we can generate a larger cone that contains all possible convex

combinations of points in
−→
P [16]. As referred in [16], we will

also name this cone to be the Terminal Cone (co(
−→
P )) with

vertex at η∗(T ).

Let us define a system z whose dynamics are as in equation
(31)

ż =

[

0 0n×1

−Lq(t, q
∗, u∗) −fq(t, q∗, u∗)T

]

z. (31)

Clearly, the variables z and φ are adjoint to each other and
hence, we have

˙(

zTφ
)

= zT φ̇+ żTφ = 0 (32)

As a consequence of this adjoint property, zT (t1)φ(t1) =
zT (t2)φ(t2) for all t1, t2 ≥ b (since φ is defined for t ≥ b).

Now we define a ray r ∈ R
1+

n(n+1)
2 in the direction

[−1, 0, · · · , 0] starting at η∗(T ), and clearly this ray does

not intersect with the convex cone co(
−→
P ). To see this let us

consider the optimality of η∗, which says rT (η(T )−η∗(T )) =
q̃∗(T )− q̃(T ) ≤ 0.
By the separating hyperplane theorem [17], we know that two
convex sets can be separated by a hyperplane i.e. for any two
convex sets, there exists a hyperplane such that the two convex
sets lie in two different sides of the separating hyperplane. Note

that the convex set co(
−→
P ) and ray r share a common point

namely η∗(T ) and hence the separating hyperplane should pass
through this point. If the normal to the separating hyperplane

is

(

p∗0
p∗(T )

)

, then we have that

(

p∗0
p∗(T )

)T

r ≥ 0 (33)
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and
(

p∗0
p∗(T )

)T

(η(T )− η∗(T )) ≤ 0 (34)

From (33), we get p∗0 ≤ 0. Let us denote the elements of
the vector z defined in (31) be such that the first component
of z is po and the rest n(n + 1)/2 components be denoted

by p i.e. z(t) =

(

p∗0
p∗(t)

)

. The system (31) is a linear system

and we have not specified any initial or final condition for this

system. At this point we specify that z(T ) =

(

p∗0
p∗(T )

)

Since

(

p∗0
p∗(t)

)

= z(t) and φ are adjoint to each other,

therefore,

(

p∗0
p∗(T )

)T

φ(T ) =

(

p∗0
p∗(t)

)

φ(t)

Therefore, from (34) and (28),
(

p∗0
p∗(T )

)T

φ(T ) =

(

p∗0
p∗(b)

)T

φ(b) ≤ 0 (35)

Substituting the expression of φ(b) in (35), we obtain

(

p∗0
p∗(b)

)T

(g(b, η∗(b), w)− g(b, η∗(b), u∗(b))) ≤ 0 (36)

Defining the Hamiltonian H to be H(q, u, p, p0) =
pf(t, q, u) + p0L(t, q, u) we obtain from (36),

H(q∗(b), u∗(b), p∗(b), p∗0) ≥ H(q∗(b), w, p∗(b), p∗0) (37)

Equation (37) is the well known Pontryagin maximum
principle equation [18]. Therefore, the functional optimization
problem (19) has been converted into a pointwise optimization
problem, which can be solved along with the constraints on
the scheduling law u(·).

V. SIMULATION RESULTS

Let us consider the linear stochastic system given by the
dynamics:

dx =

[

0 1
1 0

]

xdt+

[√
2 0
0 1

]

dWt (38)

For this system, we have three observations y1, y2, and y3
whose dynamics are given below:

dy1 = [1, 0]xdt+
√
.2dv1t

dy2 = [0, 1]xdt+
√
.2dv2t

and

dy3 =

[

1 0
0 1

]

xdt+

[

.5 0
0

√
.1

]

dv3t (39)

y3 is a full state observation where y1 and y2 partially observe
the states. The running costs for the sensors are taken to be
constant and their values are c1 = 0.05, c2 = 0.07 and c3 =
0.1. The switching cost is also taken to be time independent
and its value is k = 0.05. Moreover, we also restrict that the
switching cost is zero when a sensor is going from on state
to off state. Note that the third observation gives full state

information but it has high uncertainty. The sensor costs are
taken in such a way that the sensor with low variance and
high observability has higher cost. For this system, the optimal
schedule for the sensors is shown in Figure 1.

0 1 2 3 4 5
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1

2

u
1

0 1 2 3 4 5
0

1
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u
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0 1 2 3 4 5
0

1

2

Time

u
3

Fig. 1. Optimal schedule for the Sensors.
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Fig. 2. Optimal cost versus cost of operating three sensors simultaneously.
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Fig. 3. tr(P ) for optimal scheduling and for the case when all sensors are
active.

The figures show that the optimal scheduling does not
require all the sensors to be operating all the time. With this
scheduling scheme, the optimal cost and the cost incurred

243



when all sensors are functioning are compared in figure 2.
The covariance matrix P is an indication for the accuracy in
estimation. In figure 3, the tr(P ) is plotted for the optimal
scheduling and the case when all sensors are operating.

VI. CONCLUSION

In this paper, we have considered a distributed dynamic
sensor scheduling problem for the purpose of state estimation.
The error in state estimation is denoted by the trace of the
covariance matrix between the process x and the estimate x̂.
The σ-fields generated by the measurements are dependent on
the choice of scheduling and hence proper care has been taken
by preforming change of probability measure to evaluate the
error covariance. Though it is not shown in this paper, direct
calculation leads to the fact that the covariance matrix satisfies
the Riccati differential equation given in equation (18). The
cost functional after minimizing w.r.t. the estimate x̂, becomes
a standard Lagrangian cost with the new definition of the
switching cost defined in equation (3). Necessary conditions
for optimality are derived and the functional optimization
problem (19) has been converted to a pointwise optimization
problem (Theorem IV.1).
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