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Abstract—In the context of parameter estimation, we study
the problem of sensor management under a sparsity-promoting
framework, where a sensor being off at a certain time instant
is represented by the corresponding column of the estimator
coefficient matrix being identically zero. In order to achieve
a balance between activating the most informative sensors and
uniformly allocating sensor energy, we propose a novel sparsity-
promoting approach by adding an ℓ2-norm penalty function that
discourages successive selections of the same group of sensors. We
employ the alternating direction method of multipliers (ADMM)
to solve the resulting ℓ2-norm optimization problem, which can
then be split into a sequence of analytically solvable subproblems.
We finally provide numerical results and comparison with other
sensor scheduling algorithms in the literature to demonstrate the
effectiveness of our approach.

I. INTRODUCTION

Sensor management is an important problem in applications

of sensor networks such as parameter estimation, detection,

and optimal control [1]–[3]. Due to the constraints on com-

munication bandwidth and sensor battery life, it may not be

desirable to have all sensors report their measurements at all

time instants. Therefore, the problem of sensor management

arises, which seeks to activate different subsets of sensors at

different times in order to attain an optimal tradeoff between

energy use and estimation or detection accuracy.

In this paper, we focus on the problem of sensor manage-

ment for parameter estimation. Recently, this problem has been

studied under a sparsity-promoting framework [4]–[7]. In [4],

the problem of sensor selection was addressed by seeking

the optimal sparse estimator gain matrix, where a one-to-

one correspondence between active sensors and the nonzero

columns of the estimator gain matrix was first introduced.

As an extension of [4], a more general sparsity-promoting

framework in sensor management was proposed in [5] for find-

ing optimal periodic sensor schedules subject to measurement

frequency constraints. In [6], the design of sensor selection

scheme was transformed to the recovery of a sparse matrix. In

[7], a sparsity-aware sensor selection problem was formulated

where the number of selected sensors was minimized subject

to a certain estimation quality.

In the current literature [4]–[7], the existing sparsity-

promoting techniques may lead to scenarios in which a fixed

set of sensors, which we hereafter refer to as the most

informative sensors, are successively selected. The behavior

of successive selections of the most informative sensors could

be either due to their larger mutual information with the

target [8] or due to stronger correlation with the field point of

interest [9]. Successive selections would result in faster energy

depletion of these sensors, which may render the network

nonfunctional [10].

To address the imbalance of energy usage we introduce

a new sparsity-promoting penalty function that discourages

successive selections of the same group of sensors. This idea

has been exploited in our earlier work [11], where with the

help of reweighted ℓ1 minimization method the proposed

sparsity-promoting sensor management problem was solved

via quadratic programming. Different from [11], our main

contributions are threefold.

• Instead of using a weighted ℓ1-norm, we use the standard

unweighted ℓ2-norm to characterize the column-sparsity

of estimator coefficient matrices. Use of the ℓ2-norm

leads to a more efficient optimization framework.

• We show that the proposed ℓ2-norm optimization problem

is convex, and its solution can be efficiently found via

alternating direction method of multipliers (ADMM).

• We present a comparison of both the performance and

the computational complexity of our methodology with

the work reported in [11]. We empirically show that our

approach yields the estimation performance that is close

to that of the method in [11], but has lower computational

complexity.

II. MOTIVATION: EXAMPLE OF FIELD ESTIMATION

In this section, we begin with a motivating example of

field estimation to review the conventional sparsity-promoting

optimization framework for sensor management. We show that

the conventional method may cause an imbalance in energy

usage when the sparsity of sensor activations is promoted. To

address this issue, we seek an approach that discourages the

excessive use of the fixed group of sensors in a network.

Consider a generic system where multiple sensors are

deployed to monitor a spatio-temporally correlated random

field. Measurements from these multiple sensors at different

time instants are used to estimate the field intensity at an

unobserved location over multiple unobserved time instants.

Let f(s, t) denote the field intensity at location s and time

instant t, and with mean μf and variance σ2
f . For simplicity
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of representation, we stack all the sensor measurements into

a single vector, and the measurement of the mth sensor at the

sampling time tk, denoted by yk+(m−1)K , is given by

yk+(m−1)K = f(sm, tk) + vk+(m−1)K , (1)

for k = 1, 2, . . . ,K and m = 1, 2, . . . ,M , where K is the

number of samples per sensor, M is the number of sensors,

sm denotes the location of the mth sensor, and vk+(m−1)K is

a zero-mean Gaussian noise with variance σ2
v . The vector of

field intensities to be estimated is given by

x = [f(ς, τ1), f(ς, τ2), . . . , f(ς, τN )]T , (2)

where ς is the location where the field intensity is to be

estimated at time instants {τn}n=1,2,...,N . An example of field

estimation is presented in Fig. 1.

To perform the estimation task, consider an unbiased linear

estimator

x̂ = Wy + a =
M
∑

m=1

K
∑

k=1

yk+(m−1)KWk+(m−1)K + a, (3)

where W ∈ R
N×KM is an unknown coefficient matrix deter-

mined by the minimum mean square error criterion, Wj ∈ R
N

denotes the jth column of W, a = μf (I−W)1 is a vector to

ensure unbiasedness, I and 1 denote the identity matrix and

the all-ones vector, respectively, and y = [y1, y2, . . . , yKM ]T .

The trace of estimation error covariance matrix for the

estimate in (3) is given by [11]

J(W) = w̄TPw̄ − 2qT w̄ +Nσ2
f , (4)

where w̄ ∈ R
KMN denotes the rowwise vector of W, P =

IN×N ⊗ [Cov(z, z)+σ2
vI], ⊗ denotes the Kronecker product,

z = [f(s1, t1), f(s1, t2), . . . , f(sM , tK)]T ∈ R
KM , Cov(·, ·)

represents the covariance matrix of two random vectors, and

q = [Cov(x1, z),Cov(x2, z), . . . ,Cov(xN , z)]T .
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Fig. 1: A random field with M = 5 sensors and field intensity is estimated
at the point of interest ς = (10, 10).

It is clear from (3) that the non-zero columns of W

characterize the selected sensor measurements. For example,

if only the ith sensor reports a measurement at time tj . It

follows from (3) that Wy = yj+(i−1)KWj+(i−1)K . To seek

an optimal tradeoff between estimation accuracy and sensor

activations, a sparsity-promoting optimization problem has

been proposed in [7], [9], [12]

minimize
W

J(W) + γh(W). (5)

In (5), J(W) is the trace of estimation error covariance,

γ > 0 is a sparsity-promoting parameter since sparser sensor

schedules can be achieved by making γ larger, and h(W)
gives the number of nonzero columns of W

h(W) =
M
∑

m=1

K
∑

k=1

card(‖Wk+(m−1)K‖p), (6)

where ‖·‖p denotes an arbitrary ℓp-norm (p = 1 or 2 typically),

and the cardinality of a scalar x ∈ R is defined as

card(x) =

{

1 x �= 0
0 x = 0.

We remark that different choices of ℓp-norm will lead to

different convex relaxations of the cardinality function in (6).

It has been suggested in [9] and [13] that ADMM and proximal

algorithms are suitable tools to solve the nonconvex problem

(5). As will be evident later, our framework is a generalization

of (5).

Drawback of conventional formulation: The total number

of selected sensors in the solution of (5) decreases when γ
increases, thereby promoting sparsity in sensor activations.

However, there exist scenarios in which a fixed subset of sen-

sors (the most informative ones) will be successively selected

and thus, result in unbalanced energy usage among sensors. We

demonstrate this phenomenon in Fig. 3 of Sec. V. Motivated by

the unbalanced energy usage, we will present a new sparsity-

promoting framework for sensor management, which achieves

a balance between activating the most informative sensors and

uniformly allocating sensor energy over the entire network.

III. PROBLEM STATEMENT

In this section, we formally state the problem addressed in

this paper. We introduce a quadratic function, with respect to

the number of times that each sensor is selected over a time

horizon, to penalize the overuse of the same group of sensors.

By relaxing the cardinality function, we propose an ℓ2-norm

optimization problem to find sparse sensor schedules in an

energy-balanced manner.

Let κm denote the number of times the mth sensor is

selected over K time steps. We then use the quadratic function

κ2
m to characterize the cost of each sensor being repeatedly

selected due to its relatively fast growth as a function of

κm. For instance given a system with M = 2 sensors, it

is clear from (7) that the penalty value of using the first

sensor 4 times and the second sensor 0 times (42 + 02 = 16
units) is greater than the penalty of using each sensor 2 times

(22 + 22 = 8 units). Based on this motivation, we now

formalize the new sparsity-promoting function that penalizes

successive selections of each sensor

g(W) =

M
∑

m=1

κ2
m, κm =

K
∑

k=1

card(‖Wk+(m−1)K‖p). (7)
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Using (7), we modify the conventional formulation (5) as

minimize
W

J(W) + γh(W) + ηg(W), (8)

where γ, η > 0 are regularization parameters. It is worth

mentioning that problem (8) is not restricted to the application

of field estimation discussed in Sec. II, but suitable for a broad

class of sensor scheduling problems where a linear estimator

is used.

In problem (8), sparser sensor schedules can be achieved

by making either γ or η larger. For large γ, the resulting

sparse sensor schedule may contain less total number of active

sensors, but some sensors will be selected more frequently.

Conversely, the sparse sensor schedule resulting from large η
may include more number of total active sensors, but the set of

selected sensors is more diverse, which leads to the balanced

usage of sensor energy in the network. When η = 0, problem

(8) reduces to the conventional problem (5).

Note that the trace of estimation error covariance defined in

(4) is a convex quadratic function with respect to the rowwise

vector of W. In contrast, the sparsity-promoting penalties h
and g are functions of the columnwise vector of W. Lemma 1

shows an association between the rowwise vector w̄ and

columnwise vector w of W, respectively.

Lemma 1: Consider a matrix W ∈ R
K×MN , the rowwise

vector w̄ and columnwise vector w of W satisfy

w = Dw̄. (9)

In (9),

D = [ej1 , ej2 , · · · , ejKMN
]T ,

where ejl ∈ R
KMN denotes the basis vector with a 1 in the

jlth coordinate and 0s elsewhere, and the value jl is given by

jl = (nl − 1)KM + (ml − 1)K + kl, with ml =
⌊

l−1
KN

⌋

+ 1,

kl =
⌊

l−(ml−1)KN−1
N

⌋

+1, nl = l−(ml−1)KN−(kl−1)N ,

and ⌊·⌋ maps a real number to the largest integer smaller than

itself.

Proof: The proof is straightforward and the details are omitted

for the sake of brevity. �

Using Lemma 1, problem (8) can be rewritten as an opti-

mization problem with respect to w

minimize
w

J(w) + γ

M
∑

m=1

K
∑

k=1

card(‖wk,m‖p)

+η

M
∑

m=1

(

K
∑

k=1

card(‖wk,m‖p)

)2

,

(10)

where with an abuse of notation, J(w) is the mean square

error as a function of the columnwise vector of W, and

wk,m denotes the (k + mK − K)th subvector of w which

corresponds to wk,m = Wk+(m−1)K for k = 1, 2, . . . ,K and

m = 1, 2, . . . ,M .

Problem (10) is not convex due to the presence of the

cardinality function. For tractability, we replace the cardinality

function with an ℓ1-norm [14], [15],

minimize
w

J(w) + γ

M
∑

m=1

K
∑

k=1

‖wk,m‖p

+η
M
∑

m=1

(

K
∑

k=1

‖wk,m‖p

)2

.

(11)

In problem (11), different choices of ℓp-norm will lead to

different approximations of problem (10). When p = 1, we use

an ℓ1-norm to characterize the column-sparsity of W. The

problem (11) with p = 1 has been addressed in our earlier

work [11], where we have shown that the ℓ1-based (11) can

be transformed into a convex quadratic program. When p = 2,

an ℓ2-norm is used to characterize the column-sparsity of W

in (11). Recall that the vector wk,m is a subvector of the

columnwise vector of W and therefore, the column-sparsity

of W is precisely the group-sparsity of w. In this sense, the

use of ℓ2-norm in (11) is well motivated by the problem of

group Lasso [16], which uses ℓ2-norm to promote the group-

sparsity of a vector.

As the major contribution of this paper, we will solve

problem (11) with p = 2. Namely,

minimize
w

J(w) + γ
M
∑

m=1

K
∑

k=1

hk,m(w) + η
M
∑

m=1

gm(w), (12)

where

hk,m(w) := ‖wk,m‖2, (13)

and

gm(w) :=
(

∑K
k=1 ‖wk,m‖2

)2

. (14)

IV. OPTIMAL SOLUTIONS VIA ADMM

In this section, we first prove that the proposed new penalty

function gm(w) is a convex function and thus problem (12)

is a convex optimization problem.

Theorem 1: Problem (12) is a convex optimization problem.

Proof: See Appendix A. �

We now develop an ADMM-based algorithm to find the

optimal solution of problem (12). It has been shown in [5],

[17], [18] that ADMM is well-suited for problems that involve

(nonsmooth) sparsity-inducing regularizers such as ℓ1 and ℓ2
norms. The major advantage of ADMM is that it allows us

to split the optimization problem (12) into a sequence of

subproblems, each of which can be solved analytically. We

will elaborate on ADMM in what follows.

We begin by reformulating the optimization problem (12)

in a way that lends itself to the application of ADMM,

minimize
w,v,u

J(w) + γ

M
∑

m=1

K
∑

k=1

hk,m(v) + η

M
∑

m=1

gm(u)

subject to w = v, w = u.

(15)
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The augmented Lagrangian of (15) is given by

L(w,v,u,µ, ξ) =J(w) + γ

M
∑

m=1

K
∑

k=1

hk,m(v) + η

M
∑

m=1

gm(u)

+ µT (w − v) + ηT (w − u) +
ρ

2
‖w − v‖22 +

ρ

2
‖w − u‖22,

where µ and ξ are Lagrangian multipliers, and ρ > 0 is a

penalty weight.

The ADMM algorithm iteratively executes the following

three steps [17] for l = 1, 2, . . .

wl+1 = argmin
w

{

J(w) +
ρ

2
‖w − al1‖

2
2 +

ρ

2
‖w − al2‖

2
2

}

,

(16)

{vl+1,ul+1} = argmin
v,u

{

γ

M
∑

m=1

K
∑

k=1

hk,m(v) +
ρ

2
‖v − bl‖22

+η

M
∑

m=1

gm(u) +
ρ

2
‖u− cl‖22

}

,

(17)

µl+1 = µl + ρ(wl+1− vl+1), ξl+1 = ξl + ρ(wl+1− ul+1),
(18)

until ‖wl+1 − vl+1‖22 + ‖wl+1 − ul+1‖22 ≤ ǫ and ‖vl+1 −
vl‖22+‖ul+1−ul‖22 ≤ ǫ, where al1 = vl− 1

ρ
µl, al2 = vl− 1

ρ
ξl,

bl = wl+1 + 1
ρ
µl, cl = wl+1 + 1

ρ
ξt, and ǫ is a stopping

tolerance.

We note that the ADMM step (17) can be further decom-

posed into two subproblems,

vl+1 = argmin
v

{

γ
M
∑

m=1

K
∑

k=1

hk,m(v) +
ρ

2
‖v − bl‖22

}

, (19)

and

ul+1 = argmin
v

{

η
M
∑

m=1

gm(u) +
ρ

2
‖u− cl‖22

}

. (20)

In the subsections that follow, we will derive the analytical

solutions of ‘w-minimization’ problem (16), ‘v-minimization’

problem (19), and ‘u-minimization’ problem (20).

A. w-minimization problem

Using (4) and (9), the w-minimization problem (16) can be

rewritten as

minimize
w

1
2w

THw −
[

2(D−1)Tq+ ρal1 + ρal2
]T

w,

where H = 2(D−1)TPD−1 + 2ρI, and the matrix D is

invertible as shown by its definition in (9). According to (4),

we also obtain P ≻ 0 and thus H ≻ 0, where X ≻ 0 indicates

that X is a positive definite matrix. The minimizer of problem

(16) is then given by

wl+1 = H−1
[

2(D−1)Tq+ ρal1 + ρal2
]

. (21)

B. v-minimization problem

Using (13), the v-minimization problem (19) becomes

minimize
v

M
∑

m=1

K
∑

k=1

‖vk,m‖2 +
1

2γ̂
‖v − bl‖22,

where vk,m is the (k+mK −K)th subvector of v, and γ̂ =
γ/ρ. The solution of problem (19) is then given by a block

soft thresholding operator [13]

vl+1
k,m =

{
(

1 + γ̂

‖bl
k,m

‖2

)

bl
k,m ‖bl

k,m‖2 ≥ γ̂

0 otherwise
(22)

for k = 1, 2, . . . ,K and m = 1, 2, . . . ,M , where bl
k,m is the

(k +mK −K)th subvector of bl.

C. u-minimization problem

Using (14), the u-minimization problem (20) is

minimize
u

η
M
∑

m=1

(

K
∑

k=1

‖uk,m‖2

)2

+
ρ

2
‖u− cl‖22, (23)

which can be decomposed into M subproblems

minimize
{uk,m}k=1,2,...,K

(

K
∑

k=1

‖uk,m‖2

)2

+
1

2η̂

K
∑

k=1

‖uk,m − ck,m‖22

(24)

for m = 1, 2, . . . ,M , where η̂ = η/ρ, and we use ck,m instead

of clk,m for ease of notation.

We remark that the quadratic function with respect to the

sum of ℓ2 norms makes finding the minimizer of (24) more

challenging, since it is a nonlinear composition of nonsmooth

functions. However, Proposition 1 will demonstrate that the

solution of (24) is achievable via quadratic programming (QP).

Proposition 1: The minimizer of problem (24) is given by

u∗
k,m = r∗k

cTk,m

‖cTk,m‖2
, k = 1, 2, . . . ,K. (25)

In (25), r∗ := [r∗1 , r
∗
2 , . . . , r

∗
K ]T is the minimizer of QP

minimize
r

rT11T r+ 1
2η̂‖r− f‖22,

subject to r ≥ 0,
(26)

where f = [‖cT1,m‖2, ‖c
T
2,m‖2, . . . , ‖c

T
K,m‖2]

T .

Proof: See Appendix B. �

It is clear from (23) and Proposition 1 that the solution of the

u-minimization problem can be found through M QPs, each

of which has complexity O(K3.5) [19]. However, instead of

using QP, we will show that the analytical solution of (26) is

also tractable. We first present an important feature of problem

(26) in Lemma 2.

Lemma 2: If the entries of f satisfy f1 ≤ f2 ≤ . . . ≤ fK ,

then the solution of (26) yields r∗1 ≤ r∗2 ≤ . . . ≤ r∗K .

Proof: The proof is straightforward, proceeding by contradic-

tion. Details are omitted for the sake of brevity. �

The rationale behind exploiting the result in Lemma 2 is that

the analytical solution of (26) is tractable by sorting f in an
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ascending order. Let I denote the index set that describes the

rearrangement of {fi}i=1,2,...,K in an ascending order. And

let r∗I be the solution of (26) rearranged by I. For instance, if

f = [5, 4]T , then I = {2, 1} and r∗I = [r∗2 , r
∗
1 ]

T . The closed-

form of r∗I is given in Proposition 2. Together with I, we then

obtain the solution of (26), namely, r∗.

Proposition 2: The minimizer of problem (26), with an

index rearrangement I, is given by

r∗I,i =

⎧

⎨

⎩

0 1 ≤ i ≤ ι− 1, i ∈ N

fi −
2η̂

∑K
k=ι fk

1 + 2η̂(K − ι+ 1)
ι ≤ i ≤ K, i ∈ N,

(27)

for i = 1, 2, . . . ,K, where N denotes the set of natural

numbers, I is the index set that describes the rearrangement

of {fi}i=1,2,...,K in an ascending order, fi is the ith entry of f

given in (26), ι is the index of the first positive element in the

set of numbers
{

fi −
2η̂

∑
K
k=i

fk
1+2η̂(K−i+1)

}

i=1,2,...,K
and ι = K+1

if no positive element exists.

Proof: See Appendix C. �

According to Proposition 2, the complexity of solving prob-

lem (26) is given by O(K logK) owing to the sorting of the

entries of f in an ascending order. This is much lower than

the complexity of QP with O(K3.5).

D. Summary of ADMM and complexity analysis

The ADMM algorithm for solving (12) is summarized in

the following pseudocode format.

Algorithm 1 ADMM for solving (12)

Require: Choose ρ and ǫ. Initialize ADMM with w0 = v0 =
u0 = 1, µ = ξ = 0.

1: for l = 0, 1, . . . do

2: Obtain wl+1 from (21).

3: Obtain vl+1 from (22).

4: Obtain ul+1 from Propositions 1 and 2.

5: if ‖wl+1 − vl+1‖22 + ‖wl+1 − ul+1‖22 ≤ ǫ and

‖vl+1 − vl‖22 + ‖ul+1 − ul‖22 ≤ ǫ, quit.

6: end for

Typically, ADMM takes a few tens of iterations to converge

with modest accuracy [17], [18]. In our implementation, it

typically takes O(L0.5) iterations when ǫ = 10−3, where L =
KMN . At each iteration of ADMM, the major computation

cost lies in Step 2 of Algorithm 1 due to the matrix inversion,

with complexity O(L2.373) [20]. Thus, the total computational

complexity of Algorithm 1 is approximated by O
(

L2.873
)

.

For additional perspective, we compare the computational

complexity of Algorithm 1 to the existing method in [11],

where a reweighted ℓ1 based QP was used to obtain the energy-

balanced sensor schedules. The computational complexity of

the method in [11] can be approximated by O(L4), where

the reweighted ℓ1 method takes O(L0.5) iterations for conver-

gence, and the complexity of QP is O(L3.5). It can be seen

that Algorithm 1 reduces the computational complexity by a

factor of O(L1.127).

V. NUMERICAL RESULTS

In this section, we consider a sensor network with M ∈
{5, 10} sensors on a 20 × 20 grid, where each sensor takes

K = 10 measurements at the sampling time 0.2k for k =
1, 2, . . . ,K. The task of the sensor network is to reconstruct

the field intensities at the coordinate ς = (10, 10) over time

slots {τn}n=1,2,...,N , where τn = 0.2n+0.1 and N = 9. When

M = 5, the deployment of sensors and the field point to be

estimated is shown in Fig. 1. We assume that the correlation

model of the random field is given by Cov(f(s, t), f(s′, t′)) =
σ2
fexp{−cs‖s− s′‖2 − ct(t− t′)2}, where σ2

f = 1, cs = 0.1,

and ct = 0.1. In Algorithm 1, we select the ADMM parameters

as ρ = 100 and ǫ = 10−3.

In what follows, we define a factor to measure the energy

imbalance in the usage of each sensor due to successive

selections. Let ω = [ω1, ω2, . . . , ωM ] ∈ N
M denote the sensor

activation scheme of M sensors over K time steps, where ωi ∈
{0, 1, . . . ,K} represents the number of times the ith sensor is

selected over K time steps, and 1Tω gives the total number

of sensor activations. For simplicity, we consider a specific

sensor schedule that satisfies ω1 ≥ ω2 ≥ . . . ≥ ωM . From the

perspective of energy balance, we expect to select sensors as

uniformly as possible over K time steps. The most balanced

schedule is given by ω̃ := [ω0 + ã1, ω0 + ã2, . . . , ω0 + ãM ]T ,

where ω0 =
⌊

1
T
ω

M

⌋

yields the maximum number of times

each sensor is uniformly scheduled, and ãi is equal to 1 for

i = 1, 2, . . . , (1Tω−Mω0), and 0 otherwise. Given the actual

sensor schedule ω and the balanced schedule ω̃, we adopt the

distance dim = ‖ω − ω̃‖2 to measure the energy imbalance

between ω and ω̃.

In our numerical examples, a normalized value of dim is

used for multiple simulation trials. Specifically, let d
(n)
im denote

the distance between ω(n) and ω̃(n) associated with the sensor

schedule for the nth simulation, where n ∈ {1, 2, . . . , Nsim}.

We can then define an energy imbalance measure (EIM) as

follows,

ρ
(n)
im =

d
(n)
im − d

d̄− d
∈ [0, 1], (28)

where d and d̄ denote the minimum and maximum value of

{d
(n)
im }n=1,2,...,Nsim

, respectively. Clearly if ρ
(n)
im < ρ

(m)
im , the

sensor schedule ω(n) yields a more balanced energy usage.

In Fig. 2, we present the results for the conventional sensor

management problem (5) for a small network with M = 5
sensors. Fig. 2-(a) presents EIM and the total number of sensor

activations as functions of regularization parameter γ. Here the

total number of sensor activations is normalized over Nsim =
10 numerical trials, each of which yields the solution of (5)

for a given value of γ. We observe that when γ increases,

EIM increases although less sensors are activated. This is not

surprising since sensors with strong correlation to the field

point of interest are successively selected. The specific sensor

activation schemes that correspond to the marked values of γ
are shown in Fig. 2-(b). For an extreme case of γ = 8, only the
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Fig. 2: Conventional sparsity-promoting approach in sensor management,
varying γ with η = 0: (a) EIM and total number of sensor activations, (b)
sensor schedules.

2nd and 3rd sensors are used, but the 3rd sensor is activated

at every time step.

In Fig. 3, we present the results for our proposed sensor

scheduling problem (10) by varying η and setting γ = 1. In

Fig. 3-(a), we observe that both EIM and the number of sensor

activations decrease when η increases. This is in contrast

to the result shown in Fig. 2, where EIM increased when

the sparsity of sensor schedules was promoted. The energy-

balanced sensor schedule is obtained since the new sparsity-

promoting penalty g in (10) enforces sensor energy to be

consumed in a balanced way. In Fig. 3-(b), we present the

specific sensor schedules for different values of η. As we

can see, when η becomes larger than γ, sensors are selected

as uniformly as possible. This is because a larger η places

more emphasis on minimizing the new sparsity-promoting

function, which discourages the successive selection of the

most informative sensors.

In Fig. 4, we present the mean squared error (MSE) of field

estimation as a function of the number of sensor activations.

In this example, we consider a larger network with M = 10
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Fig. 3: Promoting sparsity in sensor management from an energy balanced
point of view, varying η with γ = 1: (a) EIM and total number of sensor
activations, (b) sensor schedules.

sensors. For sensor scheduling, we employ three different

methods: our proposed approach for solving problem (11) with

p = 2 and γ = 0, the method of [11] for solving problem

(11) with p = 1 and γ = 0, and the conventional method

for solving problem (11) with p = 2 and η = 0. First, we

observe that when the new penalty on energy imbalance is

considered, both our approach and the method in [11] yield a

higher MSE compared to the conventional sparsity-promoting

method. This is because the most informative sensors can

be successively selected when the energy-balance concern is

ignored. Second, we observe that our approach leads to a

slightly higher MSE than that of the method in [11]. This

is due to the fact that in [11], a better proxy of the cardinality

function (i.e., the reweighted ℓ1 method [21]) is used to

solve the cardinality involved optimization problem (8), while

our approach employs an unweighted ℓ2 formulation. Our

numerical results show that the method in [11] fails to grant

energy-balanced sensor schedules if an unweighted ℓ1-norm is

used in optimization. In contrast, our approach performs well

to promote sparsity in an energy-balanced fashion, and has

236



0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

10

Number of sensor activations

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r 

(M
S

E
)

Our approach

Method in [11]

Conventional sparsity
promoting, η = 0

Fig. 4: Estimation performance comparison for different sensor scheduling
approaches.

lower computational complexity than the method in [11].

VI. CONCLUSION

In this paper, we proposed an ℓ2-norm based sparsity-

promoting penalty function to discourage temporally suc-

cessive selections of the same group of sensors. With the

aid of this penalty function, we developed a novel sparsity-

promoting framework for sensor management from an energy

balance point of view. We demonstrated that the resulting

ℓ2 optimization problem is convex and it can be efficiently

solved via the ADMM algorithm. In numerical experiments,

we introduced an energy imbalance measure to illustrate the

effectiveness of our approach, and provided comparisons with

other sensor scheduling algorithms in the literature.

In future work, a combination of reweighted ℓ1-norm and

ℓ2-norm could be employed to make a better proxy for the

column-cardinality of estimator coefficient matrices. Also, a

study on the choice of sparsity-promoting parameters will be

considered for a given network sparsity level.

ACKNOWLEDGMENT

The work of S. Liu, A. Vempaty, and P. K. Varshney was

supported by the U.S. Air Force Office of Scientific Research

(AFOSR) under the Grant FA9550-10-1-0458. The work of

M. Fardad was supported by the National Science Foundation

(NSF) under awards CNS-1329885 and CMMI-0927509. The

work of F. Chen and L. Shen was supported by the National

Science Foundation (NSF) under the award DMS-1115523.

APPENDIX A

PROOF OF THEOREM 1

To prove the convexity of problem (12), it is sufficient to

study the convexity of the function gm(w) = p2(w), where

p(w) :=
∑K

k=1 ‖wk,m‖2, which is a convex function.

Since p(w) is convex, for any two points v, u and θ ∈ [0, 1],
we obtain

p2(θv + (1− θ)u) ≤(θp(v) + (1− θ)p(u))2. (29)

By comparing the right hand side of (29) and the function

θgm(v) + (1− θ)gm(u), we have

(θp(v) + (1− θ)p(u))2 − θgm(u)− (1− θ)gm(v)

=θ2p2(v) + (1− θ)2p2(u) + 2θ(1− θ)p(v)p(u)

− θp2(v)− (1− θ)p2(u)

=− θ(1− θ)(p(v)− p(u))2 ≤ 0. (30)

From (29) and (30), we obtain

gm(θv + (1− θ)u) ≤ θgm(v) + (1− θ)gm(u),

which proves that the function gm(w) is convex. This proves

that the optimization problem (12) is convex. �

APPENDIX B

PROOF OF PROPOSITION 1

Problem (24) can be written as

minimize
{uk,m},r

rT11T r+
1

2η̂

K
∑

k=1

‖uk,m − ck,m‖22

subject to rk = ‖uk,m‖2, k = 1, 2, . . . ,K,

(31)

where we use {uk,m} instead of {uk,m}k=1,2,...,K for sim-

plicity.

Problem (31) can be further transformed to

minimize
r≥0

{

minimize
{‖uk,m‖2=rk}

rT11T r+
1

2η̂

K
∑

k=1

‖uk,m − ck,m‖22

}

,

(32)

where the inner minimization problem is with respect to

{uk,m}, while the outer is with respect to r. Note that the

equivalence between (31) and (32) can be verified, proceeding

by contradiction and using the fact that the solution of problem

(32) is unique.

We first consider the inner minimization problem of (32)

minimize
{uk,m}

1

2η̂

K
∑

k=1

‖uk,m − ck,m‖22

subject to ‖uk,m‖2 = rk, k = 1, 2, . . . ,K,

(33)

which can be decomposed into K subproblems

minimize
uk,m

1
2η̂‖uk,m − ck,m‖22

subject to ‖uk,m‖2 = rk
(34)

for k = 1, 2, . . . ,K.

From a geometrical point of view, the minimizer of (34) can

be interpreted as a point lying at the surface of Euclidean ball

‖uk,m‖2 ≤ rk such that its distance from a give point ck,m
is minimized. Therefore, the solution of (34) is a vector with

length rk and direction
ck,m

‖ck,m‖2

. Furthermore, the solution of

(33) can be given by u∗
k,m = rk

c
T
k,m

‖cT
k,m

‖2

for k = 1, 2, . . . ,K.

Substituting {u∗
k,m} into (32), the outer minimization problem

becomes QP (26). The proof is now complete. �
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APPENDIX C

PROOF OF PROPOSITION 2

Without loss of generality, we assume that f1 ≤ f2 ≤ . . . ≤
fK . Then according to Lemma 2, we have r∗1 ≤ r∗2 ≤ . . . ≤ r∗K
for the solution of problem (26). Our goal is to find this value

of r∗ in a closed-form.

Note that the solution of problem (26) is unique since it is

strongly convex [22]. Also, the optimal primal-dual feasible

pair (r,ν) is given by KKT conditions of (26):

• primal and dual feasibility: r ≥ 0 and ν ≥ 0, (35a)

• complementary slackness: riνi = 0 for i = 1, 2, . . . ,K,

(35b)

• stationary condition: r = (I+ 2η̂11T )−1(f + η̂ν). (35c)

According to (35c), we obtain

r =

(

I−
2η̂

1 + 2η̂K
11T

)

(f + η̂ν), (36)

where we use the fact that (I+2η̂11T )(I− 2η̂
1+2Kη̂

11T ) = I.

Now, from (35b), consider different cases for the values of

optimal dual variable ν. If ν = 0, we have

ri = fi −
2η̂

∑K
k=1 fk

1 + 2η̂K
, i = 1, 2, . . . ,K. (37)

According to (35a) and (35b), we can conclude that r∗ = r

only if f1 >
2η̂

∑
K
k=1

fk
1+2η̂K . If f1 ≤

2η̂
∑

K
k=1

fk
1+2η̂K , then the solution

of (26) is not given by (37), which yields that the vector of

optimal dual variables ν is not zero. Suppose that νj �= 0 for

some j ∈ {1, 2, . . . ,K}, then from (35b), we have r∗j = 0.

Recall that 0 ≤ r∗1 ≤ r∗2 ≤ . . . ≤ r∗K , implying that r∗1 = 0.

Therefore, we obtain if f1 ≤
2η̂

∑
K
k=1

fk
1+2η̂K , r∗1 = 0. In summary,

we have the following result.

If f1 >
2η̂

∑
K
k=1

fk
1+2η̂K , then r∗i = fi −

2η̂
∑

K
k=1

fk
1+2η̂K , for i =

1, 2, . . . ,K. If f1 ≤
2η̂

∑
K
k=1

fk
1+2η̂K , then r∗1 = 0.

In the aforementioned conclusion, note that the values of

r∗i for i = 2, 3 . . . ,K have not been determined when f1 ≤
2η̂

∑
K
k=1

fk
1+2η̂K . However, they can be found by letting r1 = 0

and solving problem (26) with K−1 variables. Similar to the

previous analysis, by exploring KKT conditions we obtain the

following results.

If f1 ≤
2η̂

∑
K
k=1

fk
1+2η̂K and f2 >

2η̂
∑

K
k=2

fk
1+2η̂(K−1) , then r∗i = fi −

2η̂
∑

K
k=2

fk
1+2η̂(K−1) , for i = 2, 3, . . . ,K. If f1 ≤

2η̂
∑

K
k=1

fk
1+2η̂K and f2 ≤

2η̂
∑

K
k=2

fk
1+2η̂(K−1) , then r∗2 = 0.

Continuing further, the solution of (26) can be compactly

written as

r∗i =

⎧

⎨

⎩

0 1 ≤ i ≤ ι− 1, i ∈ N

fi −
2η̂

∑K
k=ι fk

1 + 2η̂(K − ι+ 1)
ι ≤ i ≤ K, i ∈ N,

(38)

for i = 1, 2, . . . ,K, where ι is the index of the first positive

element in the numbers
{

fi −
2η̂

∑
K
k=i

fk
1+2η̂(K−i+1)

}

i=1,2,...,K
and

ι = K + 1 if no positive element exists. The proof is now

complete. �
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