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Abstract—Network science is often used to understand un-
derlying phenomena that are reflected through data. In real-
world applications, this understanding supports decision makers
attempting to solve complex problems. Practitioners designing
such systems must overcome difficulties due to the practical
limitations of the data and the fidelity of a network abstraction.
This paper explores the design of a network science solution
for the disaster relief domain with the goal of increasing the
efficiency of disaster response efforts. Various real-world network
science challenges are discussed relating to entity disambiguation
and relationship estimation as well as general data science
challenges such as limited access to representative data and
learning inference models in this environment.

A novel graph-based information management system was
designed and prototyped to access and aggregate data from
multiple sources. The system consists of five main parts: data
ingestion, graph construction, inference, situational awareness,
and evaluation. Data from open sources, such as social media, are
ingested and fused to represent people, places, and social media
users as a coherent social graph. This graph can be displayed
to first responders to increase situational awareness or used as
inputs to algorithms for graph analytics that support response
efforts. Due to the lack of historical data from disaster events,
an agent-based simulation was developed to create representative
social graphs.

I. INTRODUCTION

No two disasters are the same, yet all response efforts

face common challenges regarding the collection, processing,

and dissemination of accurate and timely information. In

particular, identifying and tracking the status and whereabouts

of potential victims is critical for first responders, as well as

for concerned families and friends who may be far from the

disaster area. Efforts to manage and make sense of rapidly

evolving incoming information are encumbered by the sheer

volume of data originating from multiple distributed sources,

often unstructured, and of varying quality and timeliness. A

consequence of these challenges is that the time required to

identify those affected by a disaster can extend to weeks or

even months [1], [2]. This delay impairs relief efforts and

places hardship on the family and friends of those affected.
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Force Contract #FA-8721-05-C-0002. Opinions, interpretations, conclusions
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by the United States Government.

The Semi-Automated Family Estimation (SAFE) system

presented here offers technology solutions for improving the

accuracy and timeliness of what is currently a very manual and

time intensive process by using data from publicly-available

sources. The primary goal of this system is to identify and

determine the status of affected individuals. Challenges to

accomplishing this goal include:

• Enormous data volumes. For example, over 3.2 million

tweets with hashtag #sandy were sent in the first 24 hours

alone after Superstorm Sandy hit the United States in

2012.

• Heterogeneous, unstructured data sources. After the

2010 Haiti earthquake, relief workers identified the het-

erogeneity of available data sources (including text,

geospatial information, photos, video, and social media

updates) as a hindrance to their effective use [3].

• Unavailability of key data sources. A catastrophic event

can make key data sources unavailable and can discon-

nect affected people from communications channels. For

example, the Haiti and Japan earthquakes destroyed build-

ings containing police and school registries, important for

determining who may be missing [3].

• Veracity of information and sources. Propagating incor-

rect information may be more damaging than propagating

none. Misinformation about missing individuals inten-

tionally propagated after the Japanese earthquake caused

anguish to the families involved [4].

• Privacy. Aggregating information about people possibly

affected by an event and making it available for analysis

risks publicizing personally identifiable information.

• Analysis efficiency. Relief workers have many urgent

tasks to accomplish in addition to identifying those af-

fected. At the same time, the many volunteers who offer

to help are often underutilized. [1], [3]

• Urgency. Speed in identifying those affected is critical

not only to assisting them but also to mitigating the

distress of family and friends.

As the amount of information available to relief workers

has grown in recent years, technical solutions have been devel-

oped to address the challenges listed above. These solutions

include the Ushahidi [5], Sahana [6], and QCRI [7] suites,

university efforts such as Reunite [8] and ANPI-NLP [1], and
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contributions from Google [9] and Microsoft [10]. Many of

these – as well as other technologies not specifically tailored

to humanitarian assistance – have been used effectively in

response to a number of recent events. While these solutions

provide a set of capabilities, none address all of the key

challenges. The SAFE system aims to overcome many of these

issues. This paper focuses on the ability to fuse a wide variety

of publicly available data sources and perform inference on

the data in support of disaster response resource allocation.

At the heart of the SAFE system is the concept that rela-

tionships among individuals are a powerful tool for inferring

information about them. While other technologies focus on

lists of individuals, SAFE represents the data using a graph

that captures the many ways that people can be linked with

each other. The nodes (or entities) in this multimodal graph are

people, places, and social media users. The edges (or links) are

relationships within modes such as “spouse of” and “friends

with” or across modes such as “works at.” The graph allows

both visualization of the relationship information and provides

a structure upon which analytics can be performed.

It should be noted that privacy is a very real concern for the

disaster response community and for data scientists in general.

In particular, as more of our lives are conducted or recorded

online, there are ongoing debates within the government,

industry, and academia concerning what the legal and technical

requirements should be for accessing and sharing personal

information [11], [12]. We have not explicitly tackled the

issue of privacy here. All the data that serve as inputs to our

system are publicly available and easily accessible via web

browser and/or public APIs. However, it has been shown that

the fusion of just a small amount of identifiable open data

(e.g., tweets) can be fused with more sensitive anonymized

data in order to perform strikingly accurate de-anonymization

[13], [14], [15]. As this may be an unintended consequence

of the fusion algorithms developed for our particular disaster

response application, we have taken steps to mask the names

and addresses of examples presented in this paper. Issues of

privacy would need to be more thoroughly considered before

a system such as the one presented here could be made

operational.

The paper is organized as follows: Section II briefly de-

scribes the SAFE architecture. Section III discusses multiple

data fusion algorithms designed for this system. A real dataset

was collected to evaluate the performance of these algorithms

individually. Section IV explores learning statistical models

to support resource allocation in disaster management. To

overcome the limited access to representative data an agent-

based simulation was used to evaluate model performance.

Finally, Section V provides a summary and presents ideas for

future work.

II. SAFE SYSTEM ARCHITECTURE

The prototype system architecture for SAFE is shown in

Fig. 1. It consists of five main parts: data ingestion, graph

construction, inference, situational awareness, and evaluation.

Fig. 1. Prototype SAFE system architecture

During data ingestion, information about residences and busi-

nesses in the affected area, as well as the people who live

there, is collected from public records or ingested from online

sources such as Google Places, Foursquare, and WhitePages.

These data are collected along with activity from social media

platforms like Twitter, Foursquare, and LinkedIn that provide

additional information about where people work, where they

visit, and who their relatives, friends, and colleagues are. On

ingest disparate data is normalized into a common representa-

tion on a source-specific basis before being stored in a database

and translated into a graphical representation.

The graph is constructed from both explicit links in the

data and by estimating additional connections (e.g., a link to

a person’s work). During the course of the disaster response

efforts various inference algorithms are applied to the graph

data to estimate high-risk individuals and locations, priori-

tize search efforts, and identify paths of communication to

potential victims. This information could be made available

for access and modification by first responders or relayed to

concerned friends and family.

III. DATA FUSION

Fusion of data across multiple sources is the key enabling

technology for constructing a single coherent graph, such as

the network shown in Fig. 2. For example, unique locations

ingested from Google Places must be fused with the corre-

sponding locations ingested from LinkedIn (e.g., Soprano’s

Pizzeria). Additionally, while social media activity may be

plentiful and rich, it is often necessary to associate a social

media account user with a “real” person. Among the many data

fusion sub-problems involved in constructing a multi-source

graph, the following subsections highlight the location fusion

and social media user to person association problems. Addi-

tionally, these algorithms are evaluated using a real dataset

collected specifically for this effort.

A. Data Ingestion

Table I illustrates the common ontology used to represent

data from a diverse set of providers. Open source data was

collected from various social media and gazetteer portals

accessible via the internet. Data was collected for a region
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TABLE I
SAFE PROTOTYPE DATABASE

Database Entity Description Number of

Records

People Individual people. Fields include name, age, and status (e.g., BELIEVED MISSING) 15,535

Locations Geographic locations. Fields include address, geocoordinates, and location type (e.g., BUSINESS) 26,334

Social Media
Users

Social media user accounts. Fields include username and platform (e.g., TWITTER) 74,324

Social Media
Activities

Activities performed by a social media user (e.g., an individual tweet) 1,342,474

Graph Nodes A node corresponds to an entry in the People, Locations, or Social Media Users tables 116,193

Graph Edges A edge corresponds to a link between graph nodes. For example, a person and location may be linked by a
LIVES AT or WORKS AT edge type

904,076

Graph Attributes A key-value pair that provides a mechanism for defining generic attributes of graph nodes or edges. 1,084,680

Fig. 2. Soprano family social network (with fictional names)

surrounding a mid-sized city and data providers were chosen to

collect information about people, locations, and social media

users. Table I illustrates the relatively large number of records

that would be collected for each entity type and the resulting

number of graph nodes, edges, and attributes. This dataset is

used to provide qualitative analysis of the algorithms discussed

in the rest of this section.

B. Location Fusion

Several publicly-available data sources include duplicate

location information both within a single source and across

multiple sources. The location names as well as any aux-

iliary information (e.g., location address) are often similar,

but they are not always exactly replicated. Automated name

matching algorithms have been developed and used for data

disambiguation for several decades [16], [17], [18]. However,

these methods are generally applied to person names (e.g.,

comparing “Steve Smith” to “Steven R. Smith”) and do not

account for auxiliary information. Accordingly, location fusion

is framed as a supervised learning problem where given a pair

of locations the goal is to classify if the locations represent

the same physical location.

To train and test a classifier, 6,628 unique pairs of locations

were manually classified into 4 categories corresponding to a

human confidence that a pair represented the same physical

location. The categories are as follows: 0) these places are not

the same; 1) there is a nonzero probability that these places are

the same; 2) these locations are probably the same; 3) these

locations are definitely the same. An example of a category “2”

might be two doctors that share the same building, but whose

addresses ingested from Google Places list two different office

numbers. An example of a category “1” might be two different

stores in the same shopping mall.

Several features were selected to represent location infor-

mation pairs. These included features to encode similarity

between pairs of name strings and pairs of address strings

by calculating the Jaro-Winkler distance [19], the Levenshtein

distance [20], and the number of matching word tokens.

Additional features included the distance in meters between

locations and indicator features for matched location type,

same data source, and less than 5 meter proximity. Using this

feature representation, a random forest classifier [21] evaluated

against the manually labeled dataset described above had an

accuracy of 68% on a holdout test set.

C. Social Media to Person Association

Determining that Twitter handle @MadisonSoprano belongs

to the unique person, Madison L. Soprano who lives at

287 Main Street (as a fictional example), can be extremely

helpful for someone that is trying to determine her safety or

whereabouts. Yet, associating physical people with their virtual

aliases is nontrivial. To perform social media account associ-

ation, a two-prong approach of name matching and location

matching is used as described in the following subsections.

This approach was taken because while a display name may

be a strong feature for social media user to person correlation,

it can often be the most noisy and difficult to disambiguate for

common names. Similarly, home location is a strong indicator

of account ownership, but the “home” of a social media user

may be ambiguous or shared with other residents.

1) Name Similarity: For name matching, the social me-

dia account handle and/or display name is compared to the

names of all “physical” people in the database (e.g., people

ingested from Whitepages). Many traditional string matching

techniques [22] were not sufficient for this problem, as media

account names and Twitter handles in particular don’t typically
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Fig. 3. Pictorial representation of home estimation algorithm for geotagged tweets: (a) activity filtered in time; (b) filtered activity quantized into temporal
bins; (c) spatial clustering within bins; (d) clusters combined across bins; (e) spatial clustering of combined activity; (f) largest cluster selected.

Fig. 4. ROC curve illustrating name similarity experiment results. The
Random Forest (RF) classifier outperforms the Support Vector Machine
(SVM) classifier using the described feature set. Additional, both methods
outperform standard name matching techniques.

look like “FirstnameLastname.” Rather, account handles often

contain partial names, nicknames, initials, or no names at all.

A supervised machine learning approach was applied, sim-

ilar to the approach described in Section III-B for location

fusion. Fifteen features were calculated for every pair of

person names and social media account names. These fea-

tures included traditional string matching measures like Jaro-

Winkler and Levenshtein distances, as well as features related

to initials and gender. Gender can be a relevant feature if users

use less formal but still common versions of their given name

(e.g., Susan vs Suzie), if they are more likely to have a maiden

name, and to help discriminate first name tokens that are not in

fact names at all. First name tokens were compared to available

US Census common baby names and ratios between male and

female classes were calculated in instances where the name is

common in both genders (e.g., Jamie). Additionally, last name

tokens were compared to a list of over 151,000 commonly

occurring surnames from the 2000 Census that accounts for

89.8 percent of the population [23]. The binary notation of

real last name vs fake last name helps the model when words

in social media names include objects or slang with a high

string matching score to a person name, but are not a common

surname. Over 90,000 pairs (corresponding to over 450 Twitter

handles) were manually classified into four categories: 3) most

likely the name person; 2) possibly the same person; 1) not

likely the same person; 0) definitely not the same person,

or no way to know. A random forest classifier [21] and a

support vector machine (SVM) classifier were applied to learn

a statistical model for associating social media accounts to

people’s full names. Fig. 4 shows performance curves on the

manually labeled dataset described above for a derived binary

classification problem constructed by grouping classes 0 and

1 and classes 2 and 3. The random forest classifier using the

features developed for the SAFE system outperforms other

algorithms; showing particularly good performance over the

techniques designed for standard name matching.

2) Home Location Estimation: Name similarity is just one

measure calculated for social media association. For accounts

that also include geographic information, another similarity

measure is calculated based on distances to estimated home

and work locations. For sources such as WhitePages and

LinkedIn, this information may be explicitly present in the

data. For other sources, for example the small fraction (but

still sizeable number) of Twitter users who geotag their tweets,

the account’s activity, clustered in both time and space, can

be used to estimate likely home and work locations.

Note that most social media activity does not contain

geocodes or other location identification (it’s been estimated

that between 80 to 98% of tweets contain no geographic

metadata and only 1 to 2% include precise locations [24],

[25]). There has been significant research in the area of

estimating the home locations of non-geocoding Twitter users

by leveraging their tweet content, tweet activity patterns,

and social network [26], [27], [28], [29]. These methods

have shown promising results, however the finest achievable

location granularity is at the city scale, which is still too coarse

for this application. For the work presented in this paper, home

location estimation is only performed for users with location

metadata.

Fig. 3 illustrates the home estimation algorithm pictorially:

(a) first, all the media activity is filtered by time to consider the

period of time when people are typically home (7 p.m. – 7 a.m.

in the prototype system); (b) all filtered activity is divided

into bins of length hour for the user’s entire social media

history – one hour bins balances general mobility patterns

and non-random high social media activity periods; (c) for

each one hour time bin, activity is clustered spatially using

agglomerative clustering with a radius of 50m. This distance

is fine enough to differentiate between houses and businesses

fairly well, yet coarse enough to combine co-located activity

subject to typical GPS errors; (d) cluster centroids for all one
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hour time bins are combined; (e) centroids are clustered again

spatially; (f) the largest cluster(s) are assigned as the social

media account user’s likely home location.

While a sufficiently large truth dataset has not been curated

for this type of data, informal evaluations show the potential

for the previously described technique. With a very small

sample size of 58 users, this algorithm achieved 81% accuracy

estimating users’ home locations to within 10m and 90%

accuracy within 50m. Finally, when the data is available

available a comprehensive approach to social media users to

person association could combine the name similarity and

home location outputs simply as a weighted sum. A threshold

could be applied to the combined output to limit the number

of noisy edges added to the graph.

IV. GRAPH ANALYTICS

Within the SAFE architecture, the graph analytics (or infer-

ence) component attempts to characterize how the impacts of a

disaster are reflected in the social network. The goal is to learn

a model that explains the observed effects while generalizing

well enough to allow estimation on the unobserved population.

The primary use of the learned model is to prioritize disaster

response efforts towards parts of the population that are most

likely impacted by the disaster. A comprehensive solution to

this problem would account for policy and implementation

concerns that are outside the scope of this effort. Instead, this

work will focus on a simplified abstraction of the resource

allocation problem.

Data mining in this context is complicated by common

social network analysis challenges: the data is large, noisy,

and dynamic [30]. Additionally, each disaster is unique and

its reflection in the social network will have its own distinct

signature. Consequently, this work focuses on an online learn-

ing formulation of the problem where a model is trained and

updated using data exclusively from the current disaster.

Using automated analytics in real-world scenarios requires

the trust of the user community to facilitate technology adop-

tion. A common approach in data science is to demonstrate

performance on historical data. In scenarios such as disaster

relief, where representative historical data is sparse and models

must be generated on-the-fly, we propose that generating

interpretable models is a reasonable alternative. Efforts will

be made to explore learning algorithms that informally carry

this property.

The final challenge in developing solutions in this space is

the lack of labeled data to assess performance. Thus, we will

first introduce an agent-based simulation approach that will be

used to generate data to evaluate our learned models.

A. Agent-Based Simulation

One of the most challenging aspects of developing technical

solutions for disaster response and humanitarian assistance is

the unavailability of relevant datasets for evaluation. Typically,

any data that is collected during a disaster event is permanently

deleted within weeks of the event’s conclusion. Moreover,

the long-term storage of this data, even by groups hoping to

conduct research, is either illegal or strongly discouraged as it

becomes harder to take cognizance of the privacy of disaster

victims as the data is distributed. Because of the lack of

real data, a mixed-membership, agent based simulation model

was developed to generate activity that was both statistically

diverse and narratively sound. The simulation uses the same

approach outlined in [31].

To create data representative of civilian day-to-day activity,

four roles are defined: “home”, “work”, “public”, and “avail-

able”. Actions are defined as transitions from one location

to another. The “work” and “home” roles have one possible

action (reflecting the assumption that each agent has, at

maximum, 1 work location and 1 home location), whereas

the “public” role has many; one for each business location

in the simulation. Agents in the “available” role have the full

set of locations available to them. Simulations are run over

one full day, split into 3 times corresponding to work hours

(9 a.m. – 5 p.m.), evening hours (5 p.m. – 10 p.m.), and night

hours (10 p.m. – 9 a.m.), with each agent drawing an event

approximately every 60 minutes.

After a full list of roles and actions for every agent is

generated, our approach differs from the approach explained in

[31]. Specifically, the idea of a “social” action is introduced

where two or more agents coordinate to meet at the same

location at the same time. This is accomplished by first finding

agents who are simultaneously in the “available” role, and

choosing the agents with the most overlap to coordinate a

social action. For an available agent, the number of additional

agents that will participate in a coordinated social action

is drawn from a Poisson distribution with mean 2. For the

selected agents, the final meeting time and duration are

computed by averaging the event time and duration of the

overlapping available windows. The final coordinated action

is drawn from a uniform distribution over the union of the

sets of possible actions for each available agent. If no other

agents are simultaneously available, the agent gets reassigned

to a “public” action. The final result of this approach is that

every “available” agent has been either reassigned to a “public”

action or to the newly defined social action with one or more

additional agents.

To increase the narrative consistency of the simulated data,

a constraint is added stating that only agents in an “available”

agent’s one-hop network are eligible to participate in a co-

ordinated social action with the “available” agent. To create

the social network that informs the activity model described

above, publicly available data is collected. Directly from these

data sources, “lives with” and “lives at” edges are established

between graph nodes representing people and locations. Then,

using reasonable heuristics we create “spouse of”, “works at”,

and “attends school at” edges. A generic “friends with” edge

is randomly assigned to people who are connected through a

location, because co-location is a predictive feature of social

ties [32]; the probability of two agents being connected by

this edge decreases exponentially with distance on the people-

locations graph. Finally, a fraction of the people in the data are

randomly sampled and assign them social media accounts. A
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“social media friends with” edge is drawn between people who

both own social media accounts and are otherwise connected

on the graph. For this application, the ground truth of the social

network is only important insofar as it affects the activity

model. For that reason, the simplifying assumptions aim to

generate consistent agent activity and are treated as truth in

the simulation.

Once agent activities are generated that are consistent with

the constructed social network, a disaster scenario is injected

into the simulation. Disasters that occur rapidly (e.g., earth-

quakes and mudslides) are selected for this initial study. The

effect of such a disaster is modeled by choosing an disaster

event time before which agent activity is normal, and after

which some area is affected.

B. Status Estimation

Following a disaster, information regarding the status of

individuals within the potentially affected population becomes

incrementally available from a variety of sources. For example,

status information may be directly gathered using a tool such

as Google Person Finder [9]. The current study formulates

status estimation as a supervised learning problem where

individuals can either be classified as affected or not-affected

by the disaster. For a given point in time, a model is learned

using training data from the subset of the population for

which status is known. The model is then used to estimate the

status of the remaining individuals and is updated as additional

information becomes available.

With the problem expressed in a binary classification frame-

work, classical supervised machine learning algorithms can be

employed for model learning. Accordingly, a feature vector for

each individual entity within the population is constructed to

both capture entity attributes and properties of the individual’s

local neighborhood. A classifier is trained using samples

contained within the observed subset of the population.

An alternative approach would be to adapt an algorithm

from the set of collective classification algorithms developed

for networked data [33]. The primary benefit of using a

collective classification algorithm would be to directly model

correlation with the unobserved neighbors of an entity of

interest. This is accomplished by formulating a model that

directly embeds a concept of label consistency. Applying

these methods is nontrivial because learning algorithms in this

online setting would need to address complex sources of bias

such as high linkage and autocorrelation as described in [34].

Additionally, even simple collective classification algorithms

(e.g., Iterative Classification [33]) add additional complexity,

which makes the resulting model less interpretable. Thus,

exploring the application of collective classification to this

problem domain is left for future work.

1) Feature Engineering: At the onset of a disaster response

effort, limited status information is available to train a model.

This dictates the choice of both a simple model and a low-

dimensional feature representation. Accordingly, a feature

representation is designed to capture the local properties of

the 1-hop network around a node or entity of interest. The

TABLE II
SAFE EDGE TABLE

Edge Index Edge Name Edge Index Edge Name

1 attends school at 8 social media friends

2 classmates with 9 spouse of

3 friends with 10 teacher student

4 is near 11 uses account

5 lives at 12 visits

6 lives with 13 works at

7 related to 14 works with

resulting feature vector is composed of a set of four indicator

features for each edge type listed in Table II. The indicator

features represent if the node of interest is connected to one

affected node, more than one affected, one unaffected node,

and more than one unaffected node through the 1-hop network

define by a given edge type. Using 14 edge types, this produces

a 56-dimensional feature vector, which has been empirically

observed to be sparse for real-world and simulated datasets.

The sparsity is directly related to limited status observations

and sparse network structure. In addition, for the simulated

experiments described below a heuristic feature that created a

1-hop network from a combination of multiple edge types was

manually defined to encode subject matter expertise (i.e. the

knowledge of an experienced first responder). This feature was

designed to represent human expertise that would be readily

available in a real-world setting. While boosting performance,

the heuristic did not dominate the learned model, demonstrat-

ing a non-trivial nature to the underlying phenomenology.

2) Experiments: Experiments were run using the simulated

datasets described in Section IV-A. For each dataset a disaster

was simulated at one of three points in time (i.e. 12 a.m.,

10:37 a.m. and 8 p.m.). Three binary classification algorithms

were trained using the feature representation described above.

These included the Bayesian Rule List (BRL) [35], Decision

Tree (DT), and a linear Support Vector Machine (SVM). The

algorithms were selected making considerations for model

simplicity and interpretability. In particular, the BRL generates

a decision list, which are a series of if–then statements that

are highly interpretable by domain experts. On the other

hand, the SVM has readily available, high performance im-

plementations; making it an attractive choice when processing

time is a concern. Empirical results demonstrate reasonable

predictive performance indicating that the social graph indeed

reflects patterns of the disaster that can be learned by a

model. Additionally, results across the chosen set of classifiers

are similar allowing a system level design decision between

interpretability (i.e. BRL) and high performance (i.e. SVM).

C. Prioritization

While status estimation optimizes a model at a given in-

stance in time, prioritization attempts to address the temporal

nature of the disaster response resource allocation problem.

The problem is cast in an active search framework where the
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Fig. 5. Prioritization curves demonstrate the potential benefit of using social
media data in disaster relief applications. The black curves indicate using
only home location information and the green curves indicate using additional
information from social media sources. The solid curves represent knowing
40% of the relationship information and the dotted curves represent knowing
80% of the relationship information. All curves begin with the status of 30%
of population known.

goal is to maximize the number of affected individuals found

[36]. Formally, given an initial state in which status informa-

tion is observed for a portion of the graph, the performance

of a search algorithm that incrementally selects a subset of

the population to observe is measured. Information from these

new observations can be used to adjust the search strategy as

the search continues. The search concludes when the status of

every individual in the population is known.

1) Experiments: To evaluate prioritization performance,

the linear SVM described in Section IV-B was trained and

iteratively updated as groups of individuals were observed.

For each search iteration, the list of unknown individuals is

ordered based on the confidence score output by the classifier

and an observation group is selected from the top of the list.

It was empirically observed that setting group size for model

updates to approximately 3% of the population is an optimal

operating point for our datasets. This behavior likely reflects

an operating point balancing the predictive power of the model

with exploring the population to support refining the model.

Results using the 10:37 a.m. dataset are shown in Fig. 5. In

each experiment, 100 Monte Carlo trials were used to sample

the initial state. The line color and style are used to denote

the specific set of data sources and initial conditions used in

each experiment.

a) Data Sources: The black curves represent a case in

which only information about where people live is used. This

information could be collected from “traditional” sources such

as the WhitePages. The green curves represent a case in which

additional relationship information is used such as peoples’

work locations or social media connections. This information

could be collected from social media sources such as LinkedIn

or Twitter.

b) Initial Conditions: The solid curves represent initial

conditions in which 30% of the node information is known and

40% of the edge information is known. For our simulated data

this is the point at which a reasonable amount of information

is available to learn a model. The dotted curves represent

initial conditions in which 30% of the node information is

known and 80% of the edge information is known. These

initial conditions illustrate upper bound performance of using

the data fusion techniques described in section III or simply

collecting additional relationship information through other

means.

As expected, the results in Fig. 5 demonstrates that per-

formance improves with more relationship information either

from additional data sources or through data fusion techniques.

Specifically, after the first 20% of the search effort, the use

of additional data sources provides over an 18% improvement

in effectiveness. Similarly, overall performance, as measured

by area under the curve (AUC), improves by over 15% when

the amount of edge information is doubled from 40% to 80%.

These results indicate that social media data has the potential

to provide value in disaster relief applications.

V. CONCLUSIONS

In this paper, we presented a prototype system for ingesting

and fusing multiple open sources of data to represent a

population affected by a disaster as a social graph. Interact-

ing with this graph can provide situation awareness to first

responders, and help to identify how potential victims may be

contacted via friends, family, and co-workers. Additionally, by

understanding how a disaster is reflected in the social network,

models can be learned to support prioritizing disaster response

resources.

Leveraging open source data to support disaster response

efforts presents many policy and technology challenges, sev-

eral of which are addressed in this work. First, identifying

and accessing appropriate data sources for any particular

population poses a significant challenge, and ingestion is

necessarily source-specific. For the system presented here,

five sources (WhitePages, Twitter, LinkedIn, Google Places

and Foursquare) were identified and data was ingested for

areas surrounding a mid-sized city. In an operational setting

additional data sources, including closed sources only available

to government authorities, could easily be included in the

framework presented.

The second significant challenge was fusing information

across these heterogeneous sources into a coherent social

graph. Specifically, two sub-problems were presented to illus-

trate the nuances of how problems in this space – in particular,

name and location matching using social media data – diverge

from existing literature. In both cases datasets were manually

labeled to evaluate the performance of algorithms built on

top of standard machine learning techniques. The promising

results provide a basis for future work and motivate a need

for standardized datasets to evaluate performance.

A third challenge addressed in this work is the need for

significant amounts of “truth” data to evaluate solutions. With

respect to disaster response, complete datasets generally do

not exist. To address this concern an agent-based simulation

was developed to generate representative social interactions at

a large scale. Real data was used to seed the simulation and

future work may explore extending this approach. Specifically,
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using real datasets to validate the social interaction model and

to design a network reaction model to apply at the onset of a

disaster are two areas for future study.

Finally, we explored several inference methods for estimat-

ing status of unobserved persons in the social graph. This was

framed as a supervised learning problem and classical ma-

chine learning techniques were applied and evaluated against

simulated datasets. In particular, interpretable models were

chosen in order to facilitate potential use in settings where non-

expert users must be able to understand and trust the algorithm

outputs. Performance on these data supports the hypothesis

that relationships within a social network can provide useful

information for estimating disaster effect phenomena. We

expect that future work in this area may draw insights from the

reinforcement learning community to marry the ideas of risk-

aware algorithm search policies with public policy concerns.
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