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Abstract—Learning about the structure of hidden or covert
networks is a major challenge in epidemiology, sociology, and
intelligence analysis. Vertices in hidden networks usually cannot
be enumerated or sampled in a systematic way; they can only
be revealed by tracing links emanating from already-observed
vertices. Observers sometimes cannot follow links directly, and
instead must rely on passive observation of a dynamic process
to reveal vertices and edges. This paper outlines a framework
for estimating network structures from partial observation of
information diffusion through the network. Diffusion is modeled
by a continuous-time Markov epidemic model. Edges are revealed
by transmission events and new vertices are uncovered when
information is transmitted to them. The approach is a gener-
alization of tools developed to reconstruct drug-user networks
from respondent-driven sampling studies in epidemiology. The
likelihood of the diffusion process can be interpreted as an
exponential random graph model. A Bayesian method for prob-
abilistic reconstruction of the transmission-induced subgraph is
described.

Keywords: Covert network, diffusion, exponential random graph
model, epidemic model, Markov process, network reconstruction

I. INTRODUCTION

Many social, organizational, and operational networks are

obscured from view and cannot be studied by comprehensive

census. When vertices can be randomly sampled, it is some-

times possible to estimate global or local graph properties from

a sampling-induced subgraph [1]–[8]. Unfortunately random

sampling of vertices or edges in a hidden network is often

impossible because no appropriate sampling frame is available.

When some or all vertices of a hidden network are observed,

explicit reconstruction often takes the form of link prediction

[9]–[14]. When most of the network is observed, but some

vertices are hidden or covert, it may be possible to detect

missing vertices [15]. When vertices or edges can be observed

in more than one sample, it is often possible to combine

information across samples to reconstruct subgraphs or esti-

mate global graph properties [16]–[18]. However, estimation

techniques that are effective under random sampling do not

necessarily perform well under other observation scenarios

[19]. In particular, estimates of global graph properties from

observed vertices – such as the degree distribution – may be

strongly affected by the sampling procedure [20], [21].

Hidden or covert networks can typically only be studied

by tracing links from one vertex to another. Link-tracing

survey techniques have gained wide use in epidemiology and

sociology for studies of hidden or hard-to-reach populations

[22], [23]. Often social stigma serves to obscure members of

hidden populations; sometimes the fear of legal repercussions

keeps individuals hidden. Respondent-driven sampling (RDS)

[23] is a link-tracing procedure that has found wide use

in epidemiology, sociology, and public health research on

drug users. RDS has also been proposed to study domestic

extremism and counterinsurgency [24]–[26].

Link-tracing studies aim to discover new nodes and the

connections between them. When the link-tracing process

constitutes a sampling design, it is possible to estimate global

properties of the network and characteristics of the population

of vertices [27]. There is evidence that data from link-tracing

studies can have very different properties from data obtained

by random sampling of vertices [28]–[30]. In link-tracing

studies, not every link between sampled nodes is observed;

usually only links that are traced can be observed, and it is

unclear whether analysts can hope to estimate properties of

the local or global networks from networks observed in this

way.

Worse, the mechanism that reveals links is often not under

the control of the observer. For example, in RDS subjects “re-

cruit” other subjects to whom they are connected in the target

population social network. As another example, an intelligence

analyst might intercept a message diffusing through a covert

network. In this idealization, vertices and edges are revealed

to the observer only when an action – such as communication

or transmission of information – happens across the edge. If

no transmission happens across a given edge, the edge is not

revealed to the observer. Likewise, if no transmission reaches

a given vertex, that vertex is not revealed to the observer.

Despite these limitations, passive observation of deterministic

or stochastic communication processes on links has been

effectively used to provide insight into the structure of hidden

or partially obscured networks [31]–[34]. The key insight in

this work is that the path and dynamics of a process on a

hidden network can reveal properties of the network itself.

This paper outlines a general strategy for probabilistic

reconstruction of the edges in a hidden network from obser-

vation of an information diffusion process on that network.

Information diffusion is modeled by a continuous-time Markov

susceptible-infected model [35]. This work is disctinct from
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“diffusion” methods for distributed learning over networks

[36]–[38]. The technique is a generalization of tools developed

for epidemiological research on networks of drug users from

data obtained by RDS link tracing [39]. First, a class of

Markov transmission processes is defined, along with the

data observed from the process. Vertices are observed when

information is transmitted to them; edges are visible only

when a transmission event takes place across them. The notion

of “transmission” is general: it can refer to any one-way

communication process that changes the state of the individual

who receives the transmission, and in which the receiver can

also transmit the information to its network neighbors. Passive

observation of this type of communication processes can reveal

important properties of network structures. A Bayesian method

for probabilistic reconstruction of the transmission-induced

subgraph is derived.

II. MARKOV DIFFUSION PROCESSES ON NETWORKS

A. Preliminaries

Suppose we wish to learn about the structure of an undi-

rected graph G = (V,E), where the vertex set V has finite

size |V | = N < ∞ and the edge set E contains no self-

loops or parallel edges. A vertex’s degree is the number

of edges incident to it that connect to other vertices in the

hidden network G. The terms “graph” and “network”, “vertex”

and “node”, and “edge” and “link” are used interchangeably.

The graph could represent a social network, an organizational

structure, or relationships between any entities of interest.

A stochastic model of one-way information diffusion on the

edges of G is constructed in a manner analogous to the

susceptible-infected model of infectious disease epidemiology

[35]. The term “diffusion” refers to the spread or transmission

of a state, message, or object along the edges of G.

Suppose that each vertex i ∈ V has a property or state Xi(t)
which is a function of time t > 0. In this paper, it is assumed

for simplicity that Xi(t) ∈ {0, 1}, but this restriction could be

relaxed. A vertex in state 1 at time t has already received the

message, and can transmit it; a vertex in state 0 has not yet

received it. Assume that at time t = 0, the set of vertices M
with Xi(0) = 1 for i ∈ M , is known. We refer to members

of M as “seeds”.

Definition 1 (Susceptible vertices and edges). A vertex j ∈ V
is susceptible to transmission at time t if Xj(t) = 0 and there

exists least one i ∈ V such that Xi(t) = 1 and {i, j} ∈ E.

An edge {i, j} ∈ E is susceptible at time t if Xi(t) = 1 and

Xj(t) = 0 or Xi(t) = 0 and Xj(t) = 1.

The time to transmission along a susceptible edge is assumed

to follow a common probability distribution. Consider two

distinct vertices i ∈ V and j ∈ V with {i, j} ∈ E. At time

t = 0, assume that Xi(0) = 1 and Xj(0) = 0. Transmission

happens independently across the edge connecting i and j at

a random time

Tij ∼ Exponential(λ), (1)
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Fig. 1. Transmission path on the true graph and observed transmission path.
At left is the transmission path GT overlaid on the network G. At left is
the observed transmission path with pendant edges implied by the observed
degrees. In particular, the analyst does not observe the full network G, nor
the transmission-induced subgraph GS .

where λ > 0 is the rate of transmission across a single

susceptible edge.

B. Observation

Suppose the vertex i ∈ V becomes known to an observer

at time ti = argmint{t : Xi(t) = 1} when it first receives

a transmission. The degree di of i in G is fully observed.

By assumption, the observer does not have direct access to

any vertices or edges in G; instead, the path of a stochastic

transmission process on the edges of G is revealed over time.

Definition 2 (Transmission graph). The directed transmission

graph is GT = (VT , ET ), where VT ⊂ V is the set of n
known vertices and a directed edge (i, j) ∈ ET indicates that

i transmitted a message to j.

It is assumed that vertices cannot receive a transmission more

than once, so GT is acyclic. This assumption can be relaxed

with some increase in notation and computation. Furthermore,

GT need not be connected if the set of seeds has |M | > 1.

While the directed transmission graph GT is fully observed,

the subgraph of observed vertices is not visible, since an edge

between vertices in VT is not visible unless a transmission

event took place across that edge.

Definition 3 (Transmission-induced subgraph). The

transmission-induced subgraph is an undirected graph

GS = (VS , ES), where VS = VT consists of n sampled

vertices, and {i, j} ∈ ES if and only if i ∈ VS , j ∈ VS , and

{i, j} ∈ E.

From this definition, it is evident that the recruitment graph

GT is a directed subgraph of GS .

Definition 4 (Transmissibility matrix). Let T be a n×n matrix

whose element Tij is 1 if vertex i can transmit the information

just before the time of the jth transmission event, and zero

otherwise. The rows and columns of T are ordered by the

time at which each subject is observed.

Let d be the time-ordered n× 1 vector of subjects’ degrees

in the order they are observed and let t = (t1, . . . , tn) be the

n × 1 vector of transmission times, where t1 < · · · < tn.

The observed data from the transmission process consists of

Y = (GT ,d, t,T).
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Figure 1 illustrates the observed data and their relationship

to the unobserved population graph G. Since the transmission

graph GT does not contain any edges along which a trans-

mission event did not take place, the transmission-induced

subgraph GS is not fully observed. However, observation of

GT and d places constraints on the topology of GS .

C. Likelihood

To derive the likelihood of the observed data on a hidden

network, it is necessary to formalize the class of reconstructed

networks for which the likelihood makes sense.

Definition 5 (Compatibility). A subgraph ĜS = (VS , ÊS) is

compatible with the transmission graph GT if

1) for each (i, j) ∈ ET , {i, j} ∈ ÊS;

2) the degree of i ∈ VS in GS does not exceed the observed

total degree di in G.

Intuitively, an estimated subgraph ĜS is compatible with GT

if GT is a (directed) subgraph of GS and the degree of each

vertex in GS is less than or equal to its degree in G. Let

w = (0, t1, t2−t1, . . . , tn−tn−1) be the n×1 vector of inter-

transmission waiting times and let A be the n× n adjacency

matrix of ĜS , with the rows and columns representing vertices

in the order they were observed. Let u be an n×1 vector whose

ith element is the number of edges connecting i to unobserved

vertices in G, so ui = di −
∑n

j=1 Aij . Figure 2 shows the

matrices used to compute the likelihood. The joint likelihood

of GT and w can be expressed in a computationally convenient

form without explicitly enumerating susceptible edges. The

likelihood is given by

L(GT ,w|GS ,d, λ) = λn−|M | exp[−λs′w] (2)

where

s = lowerTri(AT)′1+T
′
u (3)

Crawford (2015) gives a proof [39]. The statistic s is a n× 1
vector whose ith element is the number of susceptible edges

in GS just before the ith transmission event.

III. NETWORK RECONSTRUCTION

A. Exponential random graph models

The likelihood (2) can be interpreted as a function of the

adjacency matrix A, with w and λ held fixed. We can rewrite

(2) as

Pr(A) =
exp[s(A)′θ]

κ(θ)
(4)

where s(A) is a vector-valued function of A given by (3),

θ = −λw, and κ(θ) is a normalizing constant that does

not depend on A. The interpretation (4) reveals that the

likelihood of the observed data constitutes an exponential

random graph model (ERGM) for the unobserved portion of

the transmission-induced subgraph GS [40], [41]. ERGMs

have several desirable computational properties: it is straight-

forward to simulate realizations from (4) via Gibbs sampling

or Metropolis-Hastings steps; to compute the ratio of proba-

bilities of two estimated graphs, only a change statistic needs

to be calculated [42].
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Fig. 2. Matrices used to compute the likelihood (2).

B. Generating a compatible estimate

Given a compatible graph GS = (VS , ES) with correspond-

ing vector u, another compatible estimate can be obtained by

randomly choosing two vertices i and j with ti < tj such

that no transmission event took place from i to j, that is,

(i, j) /∈ ET . If {i, j} /∈ ES , ui > 0 and uj > 0, then a new

edge {i, j} is proposed. If {i, j} ∈ ES , then it is proposed

to remove the edge {i, j} from ES . The resulting proposal

graph is identical to GS except that the edge {i, j} has either

been added or removed. Furthermore, since this procedure

does not change transmission edges in GT , the proposal graph

is compatible with the observed data, by Definition 5.

The number of compatible subgraphs G∗
S that can be

produced from GS by this procedure is

nchanges(GS) =
∑

i<j

1{{i, j} /∈ ES ,ui > 0,uj > 0}

+ 1{{i, j} ∈ ES , (i, j) /∈ ER}.

(5)

The probability of producing any particular compatible sub-

graph G∗
S is

Pr(G∗
S |GS) =

1

nchanges(GS)
. (6)

This probability will be useful in forming the Metropolis-

Hastings ratio for G∗
S below.

C. Computing the likelihood ratio

Suppose first that GS has no edge between i and j, {i, j} /∈
ES . For a proposal G+

S = (VS , E
+
S ) identical to GS except

that {i, j} ∈ E+
S , the likelihood ratio is

L(GT ,w|G+
S ,d, λ)

L(GT ,w|GS ,d, λ)
= e2λ(tn−tj). (7)

Now suppose GS has and edge between i and j, {i, j} ∈ ES

with {i, j} /∈ ET . For a proposal G−
S = (VS , E

−
S ) identical to

GS except that {i, j} /∈ E−
S , the likelihood ratio is

L(GT ,w|G−
S ,d, λ)

L(GT ,w|GS ,d, λ)
= e−2λ(tn−tj). (8)
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Fig. 3. Example Bayesian reconstruction of transmission-induced subgraph GS from simulated transmission process. The network data are from a study of
social, sexual, and drug use links between individuals in Colorado Springs, CO, USA from 1988-1990. An information diffusion process is simulated through
the network with |M | = 1 seed, n = 50 total observations, and transmission rate λ = 2. The prior parameters for λ are α = 1, β = 0.57, and the sparsity
penalty is γ = 1.77. The top row shows the true transmission-induced subgraph GS , with transmission edges shown in black and unobserved edges in gray.

The adjacency matrices of GT , GS , and a random draw ĜS from the posterior distribution are also shown. The receiver-operating characteristic (ROC) curve
is shown with the area under the curve (AUC) indicating good overall reconstruction accuracy. The posterior traces of the number of edges, λ, and susceptible
edges are shown. True values are given in green.

These expression are simple and do not require the any

matrix computation implied by (2) and (3). Furthermore, the

differences tn− tj can be computed in advance and stored for

repeated use.

D. Prior for GS

While the likelihood (2) helps determine which edges be-

long in GS , point estimates or Bayesian posterior estimates

can contain more edges than the true GS . It is clear from (7)

and (8) that addition of a new edge {i, j} in GS is favored

over sending both pendant edges to unobserved vertices not

in GS . A prior distribution for GS is therefore helpful to

ensure the desired sparsity. A convenient class of priors is

Pr(GS) ∝ exp[−γ|ES |], where γ > 0 is chosen to penalize

dense graphs. Given GT and d, we have the inequalities

n− |M | ≤ |ES | ≤
1

2

n∑

i=1

di, (9)

and these bounds can be used to specify γ. The lower bound is

sharp (it is the number of edges in the transmission subgraph

GT ), while the upper bound could be tightened with specific

knowledge of d. Let p =
(
n− |M |+ 1

2

∑
i di

)
/2
(
n
2

)
be

a crude estimate of the density of GS . Then letting γ =
− log[p/(1 − p)] gives a convenient sparsity penalty without

imposing undue assumptions on the topology of GS .

E. Algorithm

Using the results given above, it is possible to reconstruct

the transmission-induced subgraph GS and observed vertices’

connections to unobserved vertices in G with reasonable accu-

racy. By alternately drawing from the conditional distributions

of GS and λ, a Gibbs sampling algorithm is derived. First

suppose λ is held fixed, and GS is a compatible subgraph

estimate. From this estimate, a new compatible subgraph G∗
S

is formed using the procedure outlined in Section III-B. Then

we compute the Metropolis-Hastings ratio

L(GT ,w|G∗
S ,d, λ)

L(GT ,w|GS ,d, λ)
·
Pr(G∗

S)

Pr(GS)
·
Pr(GS |G

∗
S)

Pr(G∗
S |GS)

(10)

and accept G∗
S if this ratio is greater than 1. Otherwise, we

accept G∗
S with probability equal to this ratio.

Next, suppose GS is fixed and we wish to sample λ. We

employ a Gamma prior for λ with π(λ) ∝ λα−1e−βλ where

α > 0 and β > 0. Then π(λ) is a conjugate prior for the

likelihood (2), and the conditional posterior distribution of λ
is Gamma(α+ n− |M |, β + s

′
w). Therefore, we can sample

λ directly from its conditional posterior distribution.

IV. RESULTS

Figure 3 shows an example of Bayesian reconstruction of

GS . The network G = (V,E) is derived from a network study

of social, sexual, and drug use links between individuals in

Colorado Springs, CO, USA from 1988-1990 [43]–[45] with

|V | = 5492 and |E| = 43288. An information diffusion

process is simulated on G with |M | = 1 seeds, n = 50
observations, and λ = 2. The prior for λ is Gamma with

α = 1, β = 0.57 (giving prior mean E[λ] = 2), and

the sparsity penalty is γ = 1.77. The marginal edge-wise

posterior distribution of GS is used to assess reconstruction
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performance. The top row of Figure 3 shows the transmission-

induced subgraph GS with transmission edges in black and

unobserved edges in gray; GT , GS , and a random draw ĜS

from the posterior distribution are shown. The bottom row

shows the receiver-operating characteristic (ROC) curve with

area under the curve (AUC) 0.83, indicating good reconstruc-

tion accuracy. Next, the number of edges in the reconstructed

estimates ĜS , estimates of λ, and the number of susceptible

edges in ĜS are shown, with true values given in green

lines. Gray dashed lines in the trace of edge counts denote

the minimum and maximum edge counts given GT and d

described in (9). A modified application of this approach to

drug user networks is given by [39].

V. CONCLUSIONS

Mapping of covert networks is an important task in intel-

ligence analysis and threat detection [46], [47]. Discovery of

nodes and links can be challenging, especially when analysts

must rely on passive observation for insight. This paper has

shown that observation of a diffusion process can reveal

topological properties of a hidden network. Two features of

the proposed method yield desirable inferential properties.

First, compatibility (in the sense of Definition 5) induces

strong topological constraints on estimated subgraphs, but

without additional insight, all such compatible subgraphs have

the same probability. Second, the likelihood of a stochastic

diffusion process can used to distinguish between compatible

topologies, providing more weight to those that occur with

higher probability under the diffusion model. Furthermore, it

may be possible to extend the proposed tools for estimating

the transmission-induced subgraph to estimation of features of

the unobserved parts of the super-population graph G. When a

model is specified for the global network, the sampled portion

of the graph can sometimes be used to probabilistically impute

the remaining part [48].

The stochastic model of information diffusion employed

here is simple and parsimonious, and is based on widely used

models of epidemic processes on graphs. More complicated

models that incorporate loss of transmissibility (entailing

changes to the structure of the transmissibility matrix T), or

preferential transmission between certain types of vertices are

possible with little additional computational burden. However,

assumptions required by more complicated models may not be

justifiable when aspects of the diffusion process are not known

with certainty, and a balance is necessary between realism and

parsimony.
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