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Abstract—There is good reason to model an asymmetric threat
(a structured action such as a terrorist attack) as an HMM.
Thence there is a means (described in earlier work) to detect
it via the novel Bernoulli filter paradigm that is emerging as
an integrated tracker/track-management tool. This paper details
additional progress made to model the detectability of a hidden
Markov model (HMM) that is observed in the presence of false
measurements or clutter. The ultimate goal of this analysis is to
be able to make statements regarding the minimum complexity
that an HMM would need to involve in order that it be detectable
with reasonable fidelity, as well as upper bounds on the level of
clutter (expected number of false measurements) and probability
of miss of a relevant observation. Put simply, if a threat modeled
as an HMM has (say) three components – transaction O1, followed
by O2 and then O3 with modeled delays in between – then this
would only be detectable if the delays were very small or if there
were very little clutter. A more feasible situation would involve
20 or 30 transactions. To characterize this more fully is the goal
of this manuscript.

I. INTRODUCTION

The term asymmetric threat refers to tactics employed

by, e.g., terrorist groups to carry out attacks on a superior

opponent, while trying to avoid direct confrontation. Terrorist

groups are elusive, secretive, amorphously structured decen-

tralized entities that often appear unconnected. Analysis of

prior terrorist attacks suggests that a high magnitude terrorist

attack requires certain enabling events to take place.

In this paper terrorist activites are modeled using Hidden

Markov Models (HMMs). In previous work HMMs have been

shown to provide powerful statistical techniques, and they have

been applied to various problems such as speech recognition,

DNA sequence analysis, robot control, fault diagnosis, and

signal detection, to name a few. Excellent tutorials on HMMs

can be found in [6], [7]. The applicability of HMMs for

terrorist activity modeling and other national security problem

situations has been illustrated in previous work, see e.g. [3],

[8], [10]–[12], [14]. For example, [3] uses HMMs to identify

groups with suspicious behaviour, and [8] uses HMMs for

pattern recognition of international crises.

A number of different terrorist plan HMMs are proposed

in [10]–[12], [14], including models for a truck bombing, a

plane hijacking, and production of weapons grade material.

The truck bombing HMM is shown in Figure 1. These HMMs

include multiple paths from plan initiation to plan completion,

following the intuition that there are multiple ways to, e.g.,

hijack a plane. An empirical HMM can be constructed using

available prior information, or with the help from experienced
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Fig. 1. Markov chain network modeling the planning of a truck bombing,
taken from [11]. s1: Selection of targets and reconnaissance. s2: Set up
A1 cell. s3: Set up A cell. s4: Acquire money for operation. s5: Gather
resources. s6: Expert arrives to assemble bombs. s7: Target reconnaissance.
s8: Communications and final setup. s9: Attack.

intelligence analysts [11]. For example, the HMM for develop-

ment of a nuclear weapons program (DNWP) in [10] is gleaned

using the open sources [2], [5], [9], [13], [15].

The basic motivation for modeling terrorist activities via

HMMs is twofold. Firstly, carrying out a terrorist activity

requires planning and preparations, following steps that form

a pattern. This pattern of actions can be modeled using a

Markov chain. Secondly, the terrorists leave detectable clues

about these enabling events in the observation space. The clues

are not direct observations of the planning and preparations,

but are rather related to them, meaning that the states in the

Markov model are hidden. For example, an observation of

a purchase of chemicals could be indicative of intentions to

produce a chemical weapon. However, a purchase of chemicals

could very well be a benign event, which motivates inclusion

of a model of observations that are unrelated to the HMM.

Following the target tracking literature, see e.g. [1], such

observations are here designated as clutter observations.

A Bernoulli filter approach to HMM detection and estimation

is presented in [4]. The Bernoulli filter can process a sequence

of observations and detect if there is an activity being planned

and organized, and if so, what stage of planning the activity

is in. In this paper we present a detectability analysis of the

problem. The problem is cast as a detection problem, where

the hypotheses HMM and NO-HMM are compared using a log-

likelihood ratio test. The type I and type II error probabilites

are evaluated by means of model simplifications and approx-

imations. The merits of the approximated error probabilities

are shown in a simulation study.
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II. PROBLEM FORMULATION

Let Z
k = {Zj}

k
j=0

be a stream of observations Zj from

time step t0 up to time step tk. We consider the problem

of testing two hypotheses against each other. The first (null)

hypothesis and the second (alternative) hypothesis are

• H0: The observations were generated by a clutter process.

• H1: The observations were generated by an HMM-in-

clutter process.

The log-likelihood ratio (LLR) is denoted

ℓ(Zk) =

k
∑

j=1

ℓ(Zj) =

k
∑

j=1

(ℓ1(Zj)− ℓ0(Zj)) (1)

where ℓj(·) is the log-likelihood function under hypothesis j.

Let Lj(·) = exp(ℓj(·)) denote the likelihood of hypothesis j.

Using an LLR threshold τ we can decide whether or not it is

likely that an HMM exists,
{

ℓ(Zk) > τ : Decide H1

ℓ(Zk) < τ : Decide H0

(2)

We are interested in the type I and type II error (false alarm

and miss, respectively) probabilities

P(ℓ(Zk) > τ |H0 true), P(ℓ(Zk) < τ |H1 true) (3)

and to obtain them we need the probability density functions

(pdfs) p(ℓ(Zk)|H0 true) and p(ℓ(Zk)|H1 true).
The topic of this paper is modeling of the type II error

probability. Expressing the pdf p(ℓ(Zk)|H1 true) analytically

is prohibitively difficult and complex in the general case. We

will therefore make some simplifications and approximations

such that an approximate pdf can be obtained. We will show

how the mean and standard deviation of the likelihood ratio

under hypothesis H1 can be approximated such that the pdf

can be approximated by a Gaussian density.

III. ASYMMETRIC THREAT MODELING

A. HMM state

Let sk ∈ S denote the HMM state at time tk, where S is

a discrete state space with Ns states, S = {S1, S2, . . . , SNs
}.

Further, let tk ∈ T = {0, 1} denote the transition state,

defined as tk = 1 if sk 6= sk−1 and tk = 0 otherwise. The

state transitions are important because in the variant of HMMs

used here the observations become available only upon state

transitions. The auxiliary transition variable t is used because

the authors found that it simplifies mathematical analysis and

implementation. Let ζk = (sk, tk) denote the joint variable.

B. State transitions

For the joint transition probability π(ζk|ζk−1) =
π(sk, tk|sk−1, tk−1) the following holds

π(ζk|ζk−1) = π(tk|sk, sk−1, tk−1)π(sk|sk−1). (4)

The HMM state transitions follow a first order Markov chain

with transition probability π(sk|sk−1). For the transition state

tk the transition matrix is

Π =

[

0 1
0 1

]

if sk 6= sk−1; Π =

[

1 0
1 0

]

otherwise. (5)

C. Observations

The observations zk ∈ Z are discrete random variables,

where Z is a discrete state space with Nz states, Z =
{Z1, Z2, . . . , ZNz

}. With a state dependent probability of

detection

pD(ζk) =

{

p0D ∈ (0, 1) if tk = 1,
0 otherwise,

(6)

the HMM generates an observation zk. The observation process

is defined by the likelihood

h(zk|ζk) = gs(zk|sk) (7)

There are also clutter observations (false alarms) super-

imposed on the true HMM observations. In each time-step, with

probability 0 < pFA < 1 a clutter observation is generated as a

random sample from a process with probability mass function

(pmf) gFA(zk).
Let Zk be the random finite set (RFS) observation at time tk.

Let Zk denote all such observations from time t1 to tk, Zk =
{Z1,Z2, . . . ,Zk}. If an HMM does not exists then Zk = Ck

and if an HMM exists then Zk is the union of two independent

RFS,

Zk = Wk ∪Ck, (8)

where Wk is HMM generated observations and Ck is clutter

observations.

The clutter observations are modeled as a Bernoulli RFS

with Finite Set Statistics (FISST) pdf

κ(Z) =

{

1− pFA, if Z = ∅
pFAgFA(z), if Z = {z}

(9)

The HMM observations are modeled as a Bernoulli RFS with

FISST pdf

η(Z|ζ) =

{

1− pD(ζ), if Z = ∅
pD(ζ)gs(z|ζ), if Z = {z}

(10)

The prior and posterior HMM state pmfs are denoted Pk|k−1(ζ)
and Pk|k(ζ). The observation pdf is

ϕ(Z|ζ) =
∑

W⊆Z

η(W|ζ)κ(Z\W), (11)

where \ denotes set difference. The summation then has two

different cases

ϕ(Z|ζ) =

{

η(∅|ζ)κ(∅) if Z = ∅,
η(z|ζ)κ(∅) + η(∅|ζ)κ(z) if Z = {z}.

(12)

D. Likelihood ratio

For H0 the likelihood is

L0(Zj) = κ(Zj) (13)

and for H1 the likelihood is

L1(Zj) =

∫

ϕ(Zj |ζ)Pj|j−1(ζ)dζ (14)
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The likelihood ratio L(Zj) = L1(Zj)/L0(Zj) has two cases,

L∅
j =1− p0DPj|j−1(t = 1) (15)

Lz

j =1− p0DPj|j−1(t = 1) +
1− pFA

pFAgFA(z)

× p0D

∫

h(z|s, t = 1)Pj|j−1(s, t = 1)ds (16)

where L∅
j = L(Zj = ∅) and Lz

j = L(Zj = {z}).

IV. SIMPLIFICATIONS AND APPROXIMATIONS

A. Model simplifications

1) The HMM is in the form of a “daisy-chain”, i.e. the HMM

state s can only transition to the next state or remain

in the same state. Expressed in terms of the transition

probability π(sk|sk−1), if sk = Si, 1 ≤ i < Ns then

π(sk = Sj |sk−1 = Si) =







1− PT j = i
PT j = i+ 1
0 otherwise

(17)

and if sk = SNs
then

π(sk = Sj |sk−1 = Si) =

{

1 if j = i
0 otherwise

(18)

2) The size of the observation state space is equal to the

HMM state space, i.e. Nz = Ns. The observation pmf is

gs(z = Zj |sk = Si) =

{

Pobs if j = i
1−Pobs

Nz−1
otherwise

(19)

where 0 ≪ Pobs . 1 (i.e. Pobs is close to one).

Remark: This simplification means that each state has

its own unique type of detection, and it is very unlikely

that – given that there is a detection – a state would

give the “wrong” type of detection. For example, let

there be two states representing 1) that an apartment has

been rented, and 2) that a large quantity of fertilizer has

been bought. Given that the state is detected, we assume

that it is unlikely that apartment rental will produce a

true detection that fertilizer was bought, or vice versa.

However, note that we do not make any assumptions

regarding the probability that a state is detected. �

3) The clutter is uniformly distributed, gFA(z) = Nz
−1,

i.e. it is equiprobable for all the Nz possibilities.

B. Likelihood approximations

1) Under the assumption that the HMM is a simple chain,

the predicted marginal probability of state transition is

Pj|j−1(t = 1) = PT

(

1− Pj|j−1(s = SNs
)
)

(20)

We approximate this as

Pj|j−1(t = 1) ≈ PT . (21)

i.e. the approximation is Pj|j−1(s = SNs
) ≈ 0. Under

this approximation it follows that the likelihood ratio

at time steps for which there is no detection (15) is

approximated as

L∅
j ≈ 1− p0DPT (22)

Remark: The approximation Pj|j−1(s = SNs
) ≈ 0 is

typically valid when the true state is not close to the last

state SNs
. In general the approximation is more accurate

the more states the HMM has, i.e. the larger Ns is. �

2) Assume that at time step tm there is a detection zm =
Zi. For the observation likelihood function (19) the

integral in the likelihood ratio (16) is
∫

h(z = Zi|s, t = 1)Pm|m−1(s, t = 1)ds

=PobsPm|m−1(s = Si, t = 1)

+
1− Pobs

Nz − 1

(

1− Pm|m−1(s = Si, t = 1)
)

(23)

We approximate

1− Pobs

Nz − 1
≈ 0 (24)

and it follows that the likelihood ratio is approximated

Lz

m ≈1− p0DPT (25)

+
1− pFA

pFAN
−1
s

p0DPobsPm|m−1(s = Si, t = 1)

Remark: The approximation used here is valid under

the model simplification above that Pobs is almost one.

Further, in general the approximation is more accurate

the larger Nz = Ns is, i.e. the more states there are in

the HMM. �

V. APPROXIMATION OF THE TYPE II ERROR PROBABILITY

When H1 is true, an HMM exists and the detections Z
k are

generated by both the HMM and the clutter process. For either

type of detection, the likelihood ratio can be further simplified.

1) If the detection is a clutter detection, the typical

case is that sm = Si has low predicted probability

(Pm|m−1(s = Si, t = 1) ≈ 0). In this case the

likelihood ratio (25) can be further approximated as

Lz

m ≈1− p0DPT (26)

Remark: The approximation Pm|m−1(s = Si, t = 1) ≈
0 is more accurate the more states there are, i.e. the

larger Ns is. Note that (1− pFA)/pFA in (25) becomes

increases for decreasing pFA, and this (together with

an increaseing number of states Ns) will make the

approximation less accurate. However, a very low pFA
is of little practical interest, because in most realistic

scenarios the probability of have a clutter detection will

not be close to zero. �

2) If the detection zm = Zi was caused by the HMM, the

approximation Pm|m−1(sk = Si, tk = 1) ≈ 0 typically

does not hold. For this case the predicted probability is

simplified as follows.
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Assume that at time step n < m there was a detection

zn = Zi−1 such that the posterior pmf Pn|n(ζ) indicates

a high probability that the HMM is in state sn = Si−1.

Further, assume that in between time steps n and m
there were no detections. Given the pmf Pn|n(sn, tn)
the sought after predicted probability Pm|m−1(sm =
Si, tm = 1) is then given by first iterating prediction

and no-detection-measurement update for N = m − n
time steps, and then evaluating for s = Si and t = 1.

By approximating Pn|n(·) as follows,

Pn|n(s = Ss, t = t) ≈















0.9 if s = i− 1, t = 1
0.09 if s = i− 2, t = 0
0.01 if s = i− 3, t = 0
0 otherwise

(27)

the probability Pm|m−1(sm = Si, tm = 1) can be

approximately expressed as a function of the number

of time steps N since the last measurement update. We

denote this probability as P̄ (N). Thus, the likelihood

ratio (25) is approximated by

Lz

m ≈ 1− p0DPT +
1− pFA

pFAN
−1
s

p0DPobsP̄ (N) (28)

Remark: The specific numerical values in (27) are

motivated as follows: the majority of the probability

mass is concentrated in the same state as the detection

indicates. Some probability mass is contained in the

two previous states — a reflection of the probability

that the detection was a false alarm and the state s has

not transitioned to Si−1 after all. Empirically we have

found that these values are accurate for pFA > 10%.

For pFA ≈ 1% almost all probability is concentrated in

the state Si−1, however such low pFA are of little to

no practical interest. Further, empirically we have found

that the values are accurate for all p0
D

. �

Now, let Nt be the total number of time steps that it takes for

the HMM to transition from the first to the last state. The HMM

has to pass through each state, meaning that Nt ≥ Ns. The

number of time steps the HMM state will remain in a specific

state Si (i.e. no state transition) is well known to be a random

variable that is geometrically distributed with parameter PT .

The total number of time steps the HMM state will remain in

the same state (i.e. no state transition) is therefore the sum

of Ns − 1 geometrically distributed random variables, each

with parameter PT . A sum of Ns−1 identically geometrically

distributed random variables is well known to be negative

binomial distributed with parameters Ns − 1 and PT . Thus,

for Nt we have the following pmf

P (Nt) =

{

0 Nt < Ns

NBIN (Nt −Ns;Ns − 1, PT ) otherwise

(29)

where

NBIN (k; r, p) =

(

k + r − 1

k

)

(1− p)rpk (30)

Given Nt, let Nd ∈ {0, . . . , Nt} be the number of “true”

detections (if the state just transitioned to Si, the “true”

detection is Zi). The probability of a true detection is p0
D
Pobs.

The detections are assumed to be independent of each other,

and the conditional pmf for Nd is binomial distributed

P (Nd|Nt) = BIN (Nd;Nt, p
0

DPobs) (31)

=

(

Nt

Nd

)

(

p0DPobs

)Nd
(

1− p0DPobs

)Nt−Nd

(32)

For a given Nt and Nd we assume that the Nd detections

are uniformly distributed over the Nt time steps, i.e. there

are Nt/Nd time steps between each of the “true” detections.

Under this assumption, and using the approximations above,

the LLR ℓ is approximated by

ℓ̂(Nt, Nd) = (Nt −Nd) log(1− p0DPT ) (33)

+Nd log(1− p0DPT +
1− pFA

pFAN
−1
s

PobsP̄ (Nt/Nd))

For a given measurement sequence Z
k, the resulting LLR

ℓ(Zk) is deterministic. The probability density of ℓ, condi-

tioned on Nt and Nd is approximated as

p(ℓ|Nt, Nd) ≈ δ(ℓ = ℓ̂(Nt, Nd)) (34)

where δ(·) is the Dirac delta function. The cth moment of the

LLR is approximated as follows

E [ℓc|H1 true] =

∫

ℓcp(ℓ)dℓ (35)

≈

∫

∑

Nt

∑

Nd

ℓcp(ℓ|Nt, Nd)P (Nd|Nt)P (Nt)dℓ (36)

≈
∑

Nt

∑

Nd

(

ℓ̂(Nt, Nd)
)c

P (Nd|Nt)P (Nt) (37)

We approximate the true pdf over ℓ with a Gaussian pdf

p(ℓ|H1 true) ≈ N
(

ℓ ; µ̂1

ℓ , σ̂
1

ℓ

)

(38)

where the mean and standard deviation are given as

µ̂1

ℓ =E [ℓ|H1 true] (39)

σ̂1

ℓ =E
[

ℓ2|H1 true
]

− E [ℓ|H1 true]
2

(40)

VI. RESULTS

We generated HMMs with parameters

Ns ∈ {10, 20, 30, 40} PT ∈ {0.05, 0.1, 0.30}

p0D ∈ {0.7, 0.8, 0.9} pFA ∈ {0.1, 0.2, 0.3} (41)

Pobs = 0.99

which gives 108 different HMMs. Each HMM was simulated

1000 times, and we compared the empirical distribution for

the likelihood L with our approximation. For brevity we do

not show all the results, instead selected results are shown

in Figures 2, 3, 4, and 5. We see that the proposed Gaussian

approximation is least accurate when both Ns and PT are low.

For higher Ns the approximation is quite accurate for all PT ,

p0
D

and pFA.
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VII. CONCLUSION

In previous work the “Adaptive Safety and Monitoring”

(ASAM) framework was introduced as a means to model

asymmetric threats such as terrorist attacks. The modeling

recognizes both the sequential nature of the activity – for

example, a planning step must precede a surveillance step

which often is followed by (but may be in parallel to) a funding

step – and also incorporates statistical uncertainty. The natural

framework is a hidden Markov model (HMM).

More recently, the data association aspects to the model

have been examined: the steps above may be observed or they

may be missed; and even if observed they will surely be awash

in irrelevant “clutter” observations. As such, more recent work

has focused on applying insight from target tracking theory

where such data association problems are commonplace. A

natural algorithm has arisen – the Bernoulli filter – and it

seems to work well.

But a natural question remains: can these sorts of activities

be detected at all? On an intuitive level, for detectability

there must be maximum levels of clutter allowable; maximum

intervals between relevant observations; and a minimum level

of complexity. In this paper we have attempted to address the

issue by approximating the detectability of such a process.

Much remains: the parallel “false alarm” process must also be

analyzed in order to make defensible detectability statements

for particular parameterizations. The goal, which with that

missing piece should be attainable, is to make “back of

the envelope” predictions, and thereby, ultimately, to suggest

collection strategies.
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Fig. 2. An HMM exists, results for Ns = 10 and PT = 0.05. Empirical distribution (solid orange) compared to Gaussian fitted to the data (dotted green)
and Gaussian approximation (dashed blue).
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Fig. 3. An HMM exists, results for Ns = 10 and PT = 0.30. Empirical distribution (solid orange) compared to Gaussian fitted to the data (dotted green)
and Gaussian approximation (dashed blue).
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Fig. 4. An HMM exists, results for Ns = 40 and PT = 0.05. Empirical distribution (solid orange) compared to Gaussian fitted to the data (dotted green)
and Gaussian approximation (dashed blue).
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Fig. 5. An HMM exists, results for Ns = 40 and PT = 0.30. Empirical distribution (solid orange) compared to Gaussian fitted to the data (dotted green)
and Gaussian approximation (dashed blue).

179


