
Utilizing Covariates in Partially Observed Networks

David J. Marchette

Naval Surface Warfare Center,

18444 Frontage Rd, Suite 327,

Dahlgren, VA 22448

Elizabeth L. Hohman

Naval Surface Warfare Center,

18444 Frontage Rd, Suite 327,

Dahlgren, VA 22448

Abstract—In many applications of network analysis one ob-
serves the network of interest imperfectly. Inference on such net-
works requires one to either impute the unobserved information,
or to be robust to the missing information. In many applications,
such as social networks, brain connectomes, communications
networks, etc. these graphs can be extremely large, which can
make imputation problematic. Typically one has little to no
control over the missing information. Additionally, there is often
meta-data associated with the network, and incorporating these
covariates can improve the inference and provide some level of
robustness under the missing data. We will describe a family of
spectral graph algorithms that allow one to utilize covariates in a
natural way, and will illustrate the methodology on a large graph
derived from Twitter, in which one observes most of the tweets
containing geographic information (latitude and longitude of the
device used to send the tweet) and builds the mentions graph,
in which a directed edge indicates that a tweet from one user
mentioned another user. Note that since we observe only those
tweets with a location, we do not observe tweets from many of
the users mentioned, and so do not have information about their
outward edges or such covariates as their location, the languages
they speak, etc. Note that in the case of the latter, we observe
the meta-data partially as well – we observe the language of the
tweets mentioning these users, but not those sent by them.

We will describe a method to utilize the geographic information
of the subset of users for which this is observed to perform
inference on the overall graph, such as inferring missing edges
and inferring the location of users whose devices do not provide
this information.

I. INTRODUCTION

In many applications one observes information about rela-

tionships among entities that is best represented as a graph.

The graph G = (V,E) is a set of vertices (V ) corresponding

to the entities, and edges (E) – either directed or undirected,

depending on the application – corresponding to the relation-

ships. For this work we will consider only a single relationship,

and simple graphs – no duplicated edges or edges between a

vertex and itself.

In addition, we assume there are covariates – vectors of

information associated with each vertex; thus the data we

are interested in understanding and making inference about

is Gc = (V,E, X), where X is the matrix of d-dimensional

covariates. The order of the graph is |V | and the size is |E|.
Typically, these graphs are very sparse, so |E| <<

(
n

2

)
, but

the covariates X are not.

A common class of algorithms for understanding graphs and

making inferences about random graphs are those that utilize

the spectrum of a graph. These all utilize some variant of the

adjacency matrix of the graph, and compute eigenvectors or

singular vectors (in the case of directed graphs) of this matrix.

The most common matrices are the adjacency matrix itself, A
which is the binary matrix whose (i, j) entry is 1 if and only

if there is an edge from vertex i to vertex j (in the undirected

case the matrix A is symmetric), and the Laplacian, which is

L = D−A, where D is the diagonal matrix whose (i, i) entry

is the degree of vertex i. One also sees a scaled version of the

Laplacian D−

1
2 LD−

1
2 .

One variant of these was used in [1] to predict unobserved

edges. The basic idea is to use the singular vectors to represent

the graph in R
d for some suitably chosen d, then predict

edges between close vertices. If the embedding is in some

way faithful to the edge probabilities, then close vertices will

have a higher probability of edges between them.

Empirical evidence suggested that in the simplest case,

where the vertices are drawn from a small set of k groups,

and the edge probabilities are constant within and between

groups (the blockmodel random graph), the embedded vertices

would be distributed as a mixture of Gaussian distributions,

with parameters depending on the group sizes and the k × k
probabilities. This is proved in [2].

This suggests a simplistic approach to utilizing the covari-

ates X . Embed the graph into R
d and adjoin X to these

embedded points. Of course, this assumes that embedding and

the covariates are commensurate. In [3] several methods are

discussed in the introduction, and much of the literature on

related methods is cited. The authors propose a variant of the

spectral clustering method that utilizes the covariates directly.

The authors refer to this algorithm as the CASC algorithm

(for Covariate Assisted Spectral Clustering). It uses the leading

eigenvectors of:

L̃(h) = Lτ + hXXT . (1)

Here, Lτ is a variant of the scaled Laplacian, where τ is a

regularization parameter which has been observed to improve

performance in sparse graphs. Lτ is defined as

Dτ = Diag(degrees(g)) + τI (2)

Lτ = D
−

1
2

τ AD
−

1
2

τ . (3)

We use the average degree as the regularization parameter τ
as the authors recommend.

On its face it would appear that Equation (1) would not scale

to large problems, since it appears to require the calculation of

XXT , an n×n matrix. However, the algorithm proposed never
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actually computes this matrix. Instead, they use a Lanczos

algorithm to compute the eigenvectors, which only requires

calculations of the form Lτv + hX(XT v). See the paper

for more information. Note that the form of Equation (1) is

evocative of the random dot product graph formulation: the co-

variates are incorporated through their dot products. Although

this connection appears tenuous, it motivated our thinking

about the problem, and suggested the second approach.

Consider the case where the covariates X can be represented

as a graph on the vertices. In the case we consider below, we

are looking at using positions (geographic locations) along

with the graph in order to infer a language distribution for

users. It is reasonable to assume that the relevant information

in the positions can be encoded in a nearest neighbor graph –

the languages you speak will be correlated with the languages

of people near you, and it isn’t particularly informative to

know just how near they are. Furthermore, it is likely that

this correlation falls off with distance – knowing about people

far away from you is not nearly as useful as those close to

you. We propose the two variants of Equation (1) for use

in this case. Let nnk(X) be the adjacency matrix for the k-

nearest neighbors graph on the covariates X . The two methods

proposed are essentially the same as what Equation (1) would

be if we replaced the XXT with a graph.

The first method uses the Laplacian and the nearest neighbor

graph in place of the covariates:

L(g, X, λ) = λL + (1 − λ)nnk(X). (4)

The second uses the random dot product embedding dis-

cussed in [1]:

DP (g,X, λ) = λ(A + D/(n − 1)) + (1 − λ)nnk(X). (5)

These approaches are also related to the approach described

in [4], [5] and [6]. These consider jointly embedding two (or

more) sets of information into the same space. The difference

is that each stream of information results in an embedded

point, with two points associated with an object tending to

embed close together. In the approach described here, the two

streams of information result in a single point in the embedded

space, with the two streams of information contributing to the

position of the individual points and their spatial relationships

to other observations.

We could weight the edges according to distance, for

example using an exponential weighting scheme such as:

wij = e−
d(xi,xj)

σ ,

which would distinguish between high density regions like

cities and lower density regions such as rural areas where the

population tends to be more spread out. We feel that this would

bias the results toward higher density regions, so we use the

unweighted version in the experiment we discuss in Section

II.

The weighted version could easily be incorporated in an

application where the magnitude of the distances is important.

In fact, it could be used to effectively eliminate the need for

the k in the k-nearest neighbor graph. One would then con-

struct a graph of those edges whose weight would be greater

than a threshold τ , with this threshold chosen from practical

considerations of the amount of information such a weighted

edge could convey to the estimate. In some sense, this is what

the CASC algorithm of Equation (1) does. Although it uses

dot-product instead of distance, it is effectively a weighted

complete graph, with the weights corresponding to the dot

product similarity of the covariates. As mentioned above, this

representation is definitely not the way one would wish to

implement the algorithm, but it can be instructive to think

about it in this light.

II. APPLICATION

We now turn to an application of the above algorithms to

illustrate their performance on an inference task that uses a

graph and covariates on the vertices of the graph. We consider

the task of inferring the languages spoken by a Twitter user,

given a graph indicating their contacts and the location from

which they sent their tweets.

Twitter is a service that provides easy access to microblogs

by millions of users. Users can send out short messages,

which are seen by anyone who chooses to follow the user,

as well as anyone who chooses to access the Twitter API1.

Each microblog, or tweet consists of up to 140 characters,

and can contain, in addition to the content, one or more links

to other content on the web, and references to users. If a user

is referred to (mentioned) in a tweet, that tweet is highlighted

to the user. Thus the tweet can be thought of as being “sent”

to the referenced user(s), even though it is also seen by all

followers of the sender.

A. The Twitter Mentions Graph

The twitter mentions graph is a directed graph in which

each vertex corresponds to a user and there is a directed

edge between two users if the first mentions the second in

a tweet. We will consider the set of tweets to be all tweets

collected in April of 2014. Our collection strategy utilizes the

Twitter streaming API to collect all tweets, up to a Twitter-

imposed threshold, that contain a location within one of six

rectangles. These rectangles, shown in Figure 1 are set up to

roughly contain the six populated continents (although as can

be seen in the Figure these are not strictly constrained by the

continents’ true boundaries).

For each of the continents we collected all the available

tweets for the month of April.2 The number of vertices and

edges for each graph is shown in Table I. We also subset the

mentions graph to the graph of mutual mentions – there is an

edge between two vertices if each mentions the other at any

time over the collection period.

As can be seen, there is a vast difference between the orders

of the mentions digraph and the mutual mentions graph. This

is because a vertex in the later must have a location within the

1https://dev.twitter.com/docs/api/streaming
2There were a couple of outages in the first few days of April due to power

outages at our facility.
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Australia

North America

South America

Europe

Africa

Asia

Fig. 1. Six regions covered by the Twitter collectors.

TABLE I
STATISTICS OF THE MENTIONS GRAPHS.

Mentions Mutual Mentions
Continent Order Size Order Size

Africa 1,092,459 2,162,553 26,295 23,392
Australia 2,450,428 5,101,698 138,242 115,832

Asia 3,308,615 5,842,480 117,802 100,976
Europe 5,586,247 11,641,066 336,391 295,607

N. America 7,933,094 17,784,248 352,861 308,513
S. America 2,254,776 5,587,670 154,351 170,844

rectangle. A vertex can fail to be located within the rectangle

either by being located outside the rectangle, or by failing to

enable geo-location. If a user chooses not to geo-locate their

tweets, they will not be collected by our sensors. Thus we

have a clear selection bias in the edges we observe. This bias

is unavoidable in the public API, which only allows access

to a small percentage of available tweets. It is also common

in many applications where one observes only a subset of

edges, possibly because of a snowball sampling scheme or for

availability reasons such as we have in our case.

Note also that there are non-human tweeters – robots

(bots in the vernacular) that are set of to tweet out various

information (weather information, newspaper headlines, quote-

of-the-day, etc.) and most of these never mention any users,

and many of them are never geo-located. However, users do

mention these users (usually via retweeting their messages)

and so these will show up in our mentions graph. The paper

[7] describes a method for using the mentions graph to infer

location, and so one might impute the location of these bots

through algorithms such as these.

B. Geo-Location and Language

To illustrate the idea, we chose the following problem: given

the mentions graph and positions for the observed vertices,

infer the languages spoken by a vertex. The Twitter API

provides a language code associated with each tweet. This is

inferred from various information Twitter has about the tweet,

as well as the content of the tweet itself. Assigning a language

to a tweet is difficult and it is known that the algorithm used

is imperfect, and it is possible (even within the 140 character

limit) to send tweets containing more than one language, and

these have been observed “in the wild”. With that said, in this

experiment we will take the language code as truth. Each user

then has a table of the proportions of times they tweeted out a

tweet that was assigned a given language code. We illustrate

our methodology with two inference tasks:

1) Infer the proportions for a given user.

2) Infer the language that is used the most often by a user.

Each tweet we collect (with a small percentage of excep-

tions due to the vagaries of the Twitter geo-location process)

has a geographic location coded as a latitude and longitude.

This location is usually provided by the application (such as

a smart phone) that sends the tweet. Thus it is usually the

location given by a GPS unit. Occasionally it is provided by

external sources – if the user clicks on the “tweet this link”

icon on a web page, the page may assign a location to the tweet

that is specific to the page. Also, users are free to spoof their

latitude and longitude, and this is often done by researchers

who are exploring Twitter as a source of data. Finally, people

move around, sometimes quite extensively, which begs the

question of what we mean by the (single) location of an

individual computed from tweets taken throughout a given

month.

The approach we have taken is to define a “home location”

of the user to be the place from which they “tweeted the most”.

Specifically, we place a 50km disk around each tweet of the

user, and the disk containing the most tweets is the “home

location” of the user. This is essentially a two dimensional

kernel estimator of the positions, and we take the maximum

likelihood value as the “home location”.

Since this is a covariate for our inference task, it is not

too important how it is calculated or how accurate it is as a

representation of where a person is. We use the values as a

predictor for the value of interest, language, and the fact that

it is noisy and less accurate for some users than others will

be reflected in the variance of our estimator, as will be seen

in the results below.

C. Results

We explore several methods for our inference tasks. All code

is implemented using the R language [8].

g) You speak the same languages as those you mention.

This uses only the mentions graph, and averages the ta-

bles from those who are mentioned (for which language

data exists).

k) You speak the same languages as your friends. This

is the same as above, but only considers the mutual

mentions graph.

nn) You speak the language of your geographic neighbors.

This ignores the mentions graph, and uses only the

locations covariates. A k-nearest neighbors graph is

constructed for k = 10, 20, 50 and in each case we

proceed as above.

L) Laplacian embedding. Here we use Equation (4) to

embed the users, using the mentions graph and the 50-

nearest neighbors graph, and then uses the 10 nearest

neighbors. The number 10 is arbitrary for illustrative
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purposes. The embedding dimension is also 10, which

is somewhat arbitrary but was chosen after a very

preliminary analysis indicated that it was sufficient for

the inference task. of the point in the embedded space

to perform the inference.

DP) Dot product embedding. The same as the Laplacian

version using Equation (5) instead.

The labels above correspond to the different methods, and are

consistent with the labels in Figure 2.

It should be noted that the k-nearest neighbor graph can

be computed using fast nearest neighbors algorithms (we use

the version implemented in the FNN package in R [8], [9]).

These algorithms can also be designed to return approximate

nearest neighbors, which can speed up performance for larger

problems, with a corresponding reduction in accuracy. For

users that have no covariates (for example, users mentioned

whose tweets are never collected for one of the reasons stated

above), we add isolated vertices to the nearest neighbor graph.

This provides a natural way to incorporate missing covariates.

Since we have edge information in the graph, these vertices

can still contribute to the inference.

Figure 2 depicts the language estimates for the 7 algorithms

for the six continents. We depict the estimate errors as notched

box plots, with the notches giving the rule-of-thumb signif-

icance for the box. In all cases we use Hellinger distance

(computed using the R package proxy [10]) between the

estimate and the true distribution:

d(x, y) =

√√√√∑

i

(√
xi∑
j xj

−
√

yi∑
j yj

)2

(6)

The horizontal lines are an estimate of random error: we

estimate the language by selecting a vertex at random from

those with a language table. This is particularly useful as an

indicator of continents for which the majority of users are

monolingual, in which case one would expect an error of
√

2
(for example, Asia (Figure 2c) and Europe (Figure 2d)). We

do not know if these two continents have this property because

of the make-up of the tweeting population, something about

the way the languages codes are assigned for these regions,

the way the rectangular boundaries were set, or for some

other reason specific to these populations, although in Figure

3 below we can see that these are the continents with the most

diverse population of languages, which agrees to some extent

with intuition. Africa, which is similarly diverse, has nearly

as large a random error. We depict in red the error associated

with the assignment of the major language to a user. This

is computed simply as the proportion of times we make the

wrong assignment.

Note that the mutual graph is always competitive, but it can

only provide estimates for that small subset of users who have

a cohort of geo-located friends amongst whom they tweet and

mention each other. Ignoring these, the two embedding meth-

ods are always competitive, performing better than the other

techniques (except possibly for Australia (Figure 2b) where

the mentions graph g outperforms the dot product embedding,

and all methods out perform the Laplacian). The embedding

methods do not require mutual mentions, rather they utilize the

partially observed, larger graph. Note also that Australia and

North America have very similar characteristics. These are the

two continents that are essentially bilingual (Indonesian and

English, and English and Spanish, respectively), as indicated

in Figure 3. Here we plot the proportion of users with a given

primary language (a language used more than half the time by

the user). Rare languages are removed to simplify the plots.

We only consider users who have a primary language in this

plot.

In all these examples we (again arbitrarily) set λ = 0.5,

which weights the graph and the location covariates equally.

It would be worth knowing the extent to which the choice of λ
matters for this application. Looking at Figure 2, it seems clear

that most of the time the graph information encoded in the

mentions graph g and the location information encoded in the

k-nearest neighbor graphs are comparable, and so one might

suspect that our arbitrary choice is reasonable. We investigate

this by optimizing the major language prediction over λ on

a subset of 1, 000 users for each of the continents. This is

depicted in Figure 4

As we can see, the two datasets we called out as “monolin-

gual”, North America and Australia, have optimal values for λ
around 0.4, but are pretty flat throughout the region. Further,

these have a reasonable value at λ = 0 (which is equivalent to

using only geography to determine language, which for these

two regions is probably not unreasonable). The other data sets

are much less geographical in nature, with the error value for

λ = 0 being very far from optimal. South America is the only

other region where geography is most important, according to

this measure, while the other three place considerable weight

on the mentions graph.

The above optimization was performed on a grid of width

0.1, using only 1000 observations (the same observations for

each grid point/dataset pair), so obviously it could be improved

upon. Also, using the guidance for setting h given in [3] might

improve upon this approach. However, it does indicate that the

optimal value of λ can be used to gain insight into the relative

weighting of the graph and the covariates.

III. CONCLUSION

We have described two variants of the CASC algorithm

of [3], and have illustrated their use on a problem of an

incompletely observed graph with noisily observed covariates.

The algorithms do a creditable job of predicting the major

language of a user, and also beat or are competitive with

algorithms that do not utilize the covariates (on the one hand)

or the graph (on the other) in the examples we consider.

The CASC algorithm is shown in [3] to be consistent under

a block model variant in which the graph and the covariates

have distributions depending only on the group associate with

the node. The algorithm variants we discussed in this paper

are clearly both strongly related to the CASC algorithm and
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Fig. 2. Language estimates for the six continents. The red dots/numbers are the errors for the assignment of primary language to the user. The horizontal
solid/dashed lines are the median/significance for an estimate performed using a randomly chosen vertex. Each box corresponds to the estimates of 10, 000

vertices, chosen randomly from those that appear in the two graphs, for which location information is available.
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Fig. 3. Primary languages spoken by the users in each of the continents. These are the proportions of times each language is the primary language (used
more than half time) of a user. Languages that are used by fewer than 1% of the users are removed from the plots. The language code “und” indicates that
Twitter was unable to assign a language to the tweet.
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hence are likely to have the same property, although we have

not yet verified this conjecture.

The CASC paper [3] also provides an algorithm for select-

ing h, which corresponds to our parameter λ. Our approach

is more simplistic, and further research is warranted here. The

objective function of optimizing the inference on the primary

language is one choice, but if the desired inference is to obtain

the full language-histogram this may be sub-optimal. One

could easily insert the Hellinger distance into the algorithm

in this case.

Looking at Figures 2 and 3, it seems that embedding

methods perform best when more languages are spoken by

the users. In some sense, in the simple cases where few

languages are spoken almost anything can do a pretty good job

of predicting language because the speakers tend to cluster into

monolingual communities. In more rich and diverse cultures,

there is indication that the embedding methods are needed

in order to properly combine the two disparate streams of

information.

Experiments on predicting the missing (unobserved) edges

are ongoing. Preliminary indications are that neither the graph

nor the locations are strong predictors of these missing edges,

but it is challenging to design an experiment to test the

performance of these algorithms given that we do not observe

the edges. Experiments in which we artificially remove edges

are under consideration.

These classes of spectral embeddings are extremely power-

ful, and the ability to jointly embed both graphs and vertex

covariates provide a good class of algorithms for performing

inference on these data. The algorithms utilize sparse spectral

methods, and so can be applied to very large (sparse) graphs.

We use fast nearest neighbor methods to construct the nearest

neighbor graphs, and these can also scale well to large

problems.
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