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Abstract—Network theory has progressed a long way since
the Erdős–Rényi model, identifying many important real-world
phenomena that a good random graph model should capture,
and producing more realistic models to capture many of them.
However, these models are largely limited to the domain of simple
networks—nodes and links only—leaving remaining complica-
tions outside the realm of theory. In such cases, a practitioner
with complicated data is left to make decisions or apply algo-
rithms to compensate for these issues without the benefit of an
underlying model. In this paper, we develop a simple generative
model of the entity resolution problem. Noting its similarity to
the association problem in data fusion, we develop principled
inference equations for entity resolution analogous to those
developed for data association. The framework for this effort is a
ground-truth model for object states and for the network which
links them, together with a Dirichlet process model for how the
observed aliases of the objects are distributed among the observed
transactions between them. The paper focuses on the derivation
of the inference equations, and the result is demonstrated on an
illustrative example. Because the framework is based on rigorous
probabilistic models, it is particularly well suited to ambiguous
scenarios in which no single entity resolution hypothesis is stands
out as the correct one.

I. INTRODUCTION

A critical issue complicating the analysis of collections

of data is identifying references that belong to the same

underlying entity. It is the fundamental problem that arises

when joining two databases that refer to overlapping sets of

entities. Even within a single database, good entity resolution

is a pre-requisite for any subsequent analysis that involves

knowing which data is associated with which person, de-

vice, corporation, or vehicle. For example, in a bibliographic

database containing references to published papers and their

authors, an analysis may begin by considering various people’s

complete works. This can be challenging. Is John Smith on

publication a the same Jonathan Smith on publication b? Does

the “John Smith” of publication c refer to the same author as

the “John Smith” of publication a? To which entity does the

abbreviated J. Smith on publication d refer?

The partitioning of a collection of entity references into sets

corresponding to the same ground-truth entity is termed entity

resolution. Ironically, the term “entity resolution” itself suffers

from the very ailment it seeks to correct. In different commu-

nities it known by various aliases—record linkage, duplicate

detection, deduplication, entity disambiguation/linking, etc.

Older approaches to entity resolution employ pairwise at-

tribute comparisons between references, and are limited to

identifying typographical or parse errors. These approaches

may be considered to lie within the realm of clustering. We

will limit the term “entity resolution” to refer only to more

sophisticated approaches that exploit both attributes and some

kind of network structure: e.g., both authors’ published names

and the co-authorship network among them. For example, a

shipment database containing all shipments along with the

corresponding shipper and consignee forms a graph where the

nodes are the trade entity references and the edges represent

observed shipments.

The association problem that arises in the data fusion

community is similar to the entity resolution problem, and the

purpose of this paper is to develop an entity-resolution analog

of the principled data-fusion association methodology. Data

association is the resolution of which observations on different

sensors refer to the same object. Clustering approaches do

not apply because they do not enforce structural constraints,

such as no split or merged measurements. This problem is

over 50 years old [1], and was originally approached with

an algorithmic mindset, just as entity resolution is today.

However, in a series of papers beginning with [2] in 1990,

and reaching maturity in the 2000s (e.g., [3], [4]), Mori,

Chong, and others superseded the algorithmic mindset with

a probabilistic one. Rather than computing an association

that maximizes an ad hoc score, they defined a model in

which the probability of an association hypothesis, given

the observed data, is well defined. In this framework, an

association is considered optimal not (a) because it is what a

well-regarded algorithm produces, or (b) because it maximizes

some “score,” but (c) because it has the MAP (Maximal A

posteriori Probability) according to a very natural model.

The MAP algorithm itself is nearly identical to the score-

based approach. The only difference is that MAP prescribes

an “adaptive threshold” for accepting association hypotheses.

This was demonstrated to improve performance [5], but from

an algorithmic perspective, it amounted only to a helpful

tweak. The more profound impact of the probabilistic frame-

work was that it generalized to non-kinematic data types. The

XMAP (eXtended MAP) method [6] describes the statistical

information required to incorporate non-kinematic features

into association models and algorithms [4], [7].

There are a number of effective entity resolution algorithms.

In [8] an agglomerative clustering algorithm that employs

relational similarity between nodes updates the graph upon

each agglomeration. While this technique is a good one, it

does not necessarily arrive at a globally optimal solution since
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no score is ever assigned to a particular resolution hypothesis.

In an attempt to assign such a score to a hypothesis, undirected

graphical models (Markov random fields) have been used to

assign a probability to any given hypothesis. In [9] Markov

logic, a combination of first-order logic and random fields, is

used to assign probabilities to hypotheses. In [10], [11] a dis-

criminative model uses conditional random fields to produce

such probabilities. While these models assign probabilities

to entity resolution hypotheses, because the models are not

generative, one cannot interpret the probabilities they produce

as belonging to events whose causes are understood. Instead,

we seek a generative model for the scenarios that require

entity resolution, so that we may scientifically study the causal

mechanisms and inference required for entity resolution.

Modeling entity resolution scenarios is more complex than

data association because of the network component of the

problem. The simplest probability distribution over networks

is the Erdős–Rényi model G(n, p) [12]. A draw from G(n, p)
is a graph with n nodes, with edges instantiated independently

with probability p. This simple model for networks exhibits

the small-world property of real-world networks [13], but

lacks other realistic attributes such as highly unequal degree

distribution and large clustering coefficient [14]. Nevertheless,

the Erdős–Rényi model is the natural network model to

begin with because it is simple and provides a baseline for

future development. We combine this network model with a

Dirichlet process for entity fragmentation (described below)

and a Gaussian spatial model to produce a relatively tractable

scenario for studying entity resolution.

A. Model specification

The idea of our model is as follows. We imagine that

there is an unobserved set of objects and that certain pairs

of objects have a relationship which permits some number

of transactions to be generated. For each transaction a pair

of aliases records the objects involved in the transaction, but

only imperfectly—the same object may have multiple aliases.

We restrict our attention to the case where no two objects may

share the same alias, however.

We let X denote the state space for objects, and Z denote

the state space for their aliases. These may be the same space

(for example, a space of strings) or different ones (X could

be a rich ground-truth space, whereas Z could be the limited

space in which we make observations). If there are n objects,

we label them j = 1 through n, using [n] = {1, 2, . . . , n}
to denote the set of objects. The state of object j is denoted

xj . Relations among the objects are represented by a graph

G with n nodes, and its edge set E are the pairs of objects

which are permitted to have transactions. We model G with

the Erdős–Rényi process G ∼ G(n, p). If a pair of objects

is connected by an edge e ∈ E, then that pair generates a

Poisson number of transactions, ke ∼ Po(λ).
To motivate the mechanism that produces aliases from

objects, we stipulate a few desiderata. First is an exchange-

ability criterion: for a fixed object state x, the probability

of obtaining a particular multiset of alias states should be

independent of the order of transactions. Second, alias states

have a nonzero probability of being generated repeatedly.

Given the prevalence of power-law scaling in real-world data,

which can be generated by linear preferential attachment, it

seems appropriate to postulate a similar effect for aliases

as well: when considering transactions in any ordering, the

probability of observing an alias state again should be roughly

proportional to the number of times it has already been seen.

This suggests that we model the generation of aliases as a

Blackwell–MacQueen urn scheme [15], or equivalently using a

Dirichlet process, independently for each object. (Note that the

Dirichlet process itself does not produce power-law behavior;

we have merely drawn inspiration from linear preferential

attachment schemes of Yule type [16]. A possible extension

of this work would be to use the two-parameter Pitman–Yor

process, which is a generalization of the Dirichlet process that

does produce power-law behavior [17], [18].)

Specifically, we assume that there exists a map x 7→ H0
x

taking object states to probability measures on Z . Then

independently for each object j ∈ [n], we draw a random

probability measure Hj ∼ DP(H0
xj
, θ), which is (almost

surely) discrete. The aliases for x are then generated as i.i.d.

draws from Hx. To avoid the complication of different objects

generating the same alias state, we stipulate that the base

measures H0
x have no atoms.

If we let PX denote a prior distribution on the state space

X , then the full model specification is as follows:

G ∼ G(n, p) (1a)

ke ∼ Po(λ) e ∈ E (1b)

xj ∼ PX j ∈ [n] (1c)

Hxj
∼ DP(H0

xj
, θ) j ∈ [n] (1d)

zj,e,ǫ ∼ Hxj
j ∈ e ∈ E; ǫ ∈ [ke] (1e)

T+
Z ={{zj,e,ǫ, zj′,e,ǫ} : {j, j′} = e ∈ E, ǫ ∈ [ke]} (1f)

In (1f), the observed data T+
Z is a multiset of transaction

records. A number of parameters occur in the model: n, p,

λ, θ, and any that occur within the prior PX and the family

of base measures H0
x . We keep some of these parameters, and

integrate others against corresponding prior distributions.

For j ∈ [n], let zj = {zj,e,ǫ : j ∈ e ∈ E, ǫ ∈ [ke]} be

the set of alias states generated by j. Then the zj are (almost

surely) pairwise disjoint and thus the collection of nonempty

zj is a partition of the set of alias states that occur within T+
Z .

The inference problem is to determine the probability of such

a partition from the observed data T+
Z . Section II derives this

probability. An illustrative example is shown in Section III and

directions for future work are discussed in IV.

II. DERIVATION

We let A be an association of the observed aliases—a spec-

ification of which aliases arise from the same object. We let Z
denote the observed data: this will end up being equivalent to

T+
Z in (1f), but rewritten in a form that facilitates the derivation

of the inference equations. We wish to derive the probability of
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A given Z: i.e., Pr(A|Z). This conditional probability is given

by Pr(A|Z) = Pr(A,Z)/Pr(Z), where the factor 1/Pr(Z)
is just a normalization constant. To calculate Pr(A,Z) we

formulate an observation model Pr(A,Z|X) in terms of a

hidden, ground-truth state X , as well as a prior distribution

Pr(X) on X . Integrating out X yields

Pr(A|Z) ∝

∫

Pr(A,Z|X)Pr(X) dX. (2)

The derivation of Pr(A|Z) is analogous to the derivation of

the traditional data fusion association probability as presented

in [7], [19].

A. Association probability

We will define the state X in (2) as X = (E+,x, n, ~p),
where ~p is a vector those model parameters which we wish

to integrate out of the problem, n the number of objects, x

is an array of object states xj for j ∈ [n], and E+ is the

multiset of edges of a multigraph with nodes [n]. We let E
be the edge set (without multiplicity) corresponding to E+.

Then each edge e ∈ E may be represented as e = {j, j′},

and has a multiplicity ke. We may represent each e+ ∈ E+

as e+ = (e, ǫ) where ǫ ∈ [ke]. We will assume E+ and x

are conditionally independent given n and ~p. We may think

of this as the structure of trade networks being independent of

the names of the companies involved. Furthermore, we assume

that the components xj of x are i.i.d. random variables that

do not depend on ~p. Then

Pr(X) = Pr(E+|n, ~p)Pr(n, ~p)
n
∏

j=1

Pr(xj). (3)

The data Z in (2) will have the form Z = (T+, z), where z

is an array (of length m) of alias states zi, and T+ is a multiset

of transactions. This separates the structural information in

T+
Z from the state information. We let T be the transaction

set (without multiplicity) corresponding to T+. Then each

transaction t ∈ T may be represented as t = {i, i′}, and

has a multiplicity wt. We may represent each t+ ∈ T+ as

t+ = (t, τ) where τ ∈ [wt]. Each alias i is a corrupted

version of some object j: we define a(i) → j to be the

assignment function that maps aliases to their objects. This

assignment function need not be surjective—we may well have

a−1(j) = ∅ for many objects j ∈ [n]. Given j = a(i) and

j′ = a(i′) then each transaction t+ = ({i, i′}, τ) ∈ T+

corresponds to some edge e+ = ({j, j′}, ǫ) ∈ E+. Finally,

the association A is simply a partition of the m aliases, which

is an unlabeled version of the assignment function a.

To derive the conditional probability Pr(A,Z|X) required

in (2), we begin with letting E+
j ⊆ E+ be the multiset of edges

containing the node corresponding to object j and define

dj = |E+
j | =

∑

e∈Ej

ke

to be the degree of node j. (Note: we will be overloading “d”

to refer to various multigraph degrees, trusting the meaning

to be clear from context.) We partition the dj edges at node

j into blocks (which will later be identified with aliases). The

edge partition induced by the DP-distributed measure Hxj
is

distributed according to the Chinese Restaurant Process (CRP)

or Ewens distribution. The CRP gives the probability of a

partition of dj labeled objects into a set B of unlabeled blocks

b:

Pr(B|dj) =
θ|B|Γ(θ)

Γ(θ + dj)

∏

b∈B

Γ(|b|). (4)

Let mj = |B| denote the number of blocks for node j, and

suppose we label (or order) the blocks 1 through mj . We let

djr = |b| denote the number of edges in block r for r = 1 to

mj , with
mj
∑

r=1

djr = dj .

Whereas (4) gives the probability of an (unordered) set of

blocks, we let Bj denote the (ordered) array of blocks at node

j. The probability of any Bj is 1/mj ! times the probability

of B because each of the mj ! orderings is equally likely.

Let zjr ∼ Hxj
denote the state assigned to block r, and

Pr(zjr|xj) denote the probability density of zjr given the state

xj of object j. Then the joint probability density of Bj and

the locations zj of all the blocks arising from node j is

Pr(Bj , zj |dj , xj) =
θmjΓ(θ)

Γ(θ + dj)mj !

mj
∏

r=1

Γ(djr)Pr(zjr|xj).

The product of this over all nodes j ∈ [n] gives the joint

probability density of all the block arrays ~B and all the alias

states ~z:

Pr( ~B,~z|E+,x) =

θm
n
∏

j=1

(

Γ(θ)

Γ(θ + dj)mj !

mj
∏

r=1

Γ(djr)Pr(zjr|xj)

)

.
(5)

We now translate ~B in (5) in terms of T+ and a. There are

m!/(m1!m2!...mn!) ways to assign global indices 1 through

m to the blocks in ~B while preserving the local ordering

for each j. We may also take equivalence classes under edge

labeling. There are ke! ways of labeling the ke edges for each

e ∈ E. Combining all these into a single, unlabeled class

would overcount by the product of wt! over t ∈ T . Rather

than dividing out by this, however, we retain the local labeling

τ = 1 to wt for each t ∈ T . We may now rewrite ~z as z, which

is indexed from i = 1 to m. Thus we replace zjr by zi. We

also replace djr by di, the degree in T+ of node i, trusting

the notation to keep this from being confused with dj . The

result is

Pr(T+, a, z|E+,x) =
θm

m!

∏

e∈E

ke!
m
∏

i=1

Γ(di)×

n
∏

j=1





Γ(θ)

Γ(θ + dj)

∏

i∈a−1(j)

Pr(zi|xj)



.

(6)
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Here we note that E+ is determined by T+ and a. Thus

(6) holds only for values that are consistent. Otherwise, the

probability density is zero.

B. Integration

We have suppressed the dependence on n and ~p in the

derivation of (6), but we restore it now in order to integrate

(6) against the prior (3):

Pr(T+,a, z) =

∫∫

Pr(T+, a, z|E+,x, n, ~p)×

Pr(E+|n, ~p)Pr(n, ~p)
n
∏

j=1

Pr(xj) dxd~p.
(7)

Note that it is unnecessary to sum over n or E+: the only

value of n that contributes is the one determined by a, and

the only value of E+ that contributes is the one determined

by T+ and a, so we interpret n and E+ to mean these values

in (7). In particular, note that |E+| = |T+|. To integrate x out

of (7) we let

Pr(zα) =

∫

∏

i∈α

Pr(zi|x) Pr(x) dx (8)

denote the probability that a collection of locations zα arises

from a common state. Then

Pr(T+,a, z) =

∫

θm

m!

∏

e∈E

ke!

m
∏

i=1

Γ(di)×

n
∏

j=1

Γ(θ)Pr(za−1(j))

Γ(θ + dj)
Pr(E+|n, ~p)Pr(n, ~p) d~p.

The model for E+ is parameterized by n, p and λ. First,

we draw a “trading partner” graph G from the Erdős–Rényi

process G(n, p). Then for each edge of G, we generate a

Poisson number of edges, Po(λ), in E+. Thus E comprises

the edges of G, and we define E0 to be the those edges for

which the number of transactions Po(λ) is positive.

Pr(E+|n, p, λ) =
(

pe−λ
)|E0|

q(
n

2)−|E0|λ|T+|

/

∏

e∈E

ke!,

where q = 1− (1− e−λ)p.

We also collect functions a with the same range into equiv-

alence classes, denoting the resulting association A, which

is a partition of the integers i ∈ [m]. The values of A and

T+ determine the multigraph E+ modulo its node labeling.

We let n0 denote the number of nodes in the multigraph E+

determined by A and T+. The association A encompasses

assignment functions a with any number of nodes n ≥ n0. In

particular, there are n!/(n−n0)! ways to relabel the n0 nodes

of E+ using the labels j = 1 to n. Therefore

Pr(T+, A, z) =

m
∏

i=1

Γ(di)

∫ ∞
∑

n=n0

θm

m!

(

pe−λ
)|E0| ×

λ|T+|
∏

α∈A

Γ(θ)Pr(zα)

Γ(θ + dα)

n!Pr(n, ~p)

(n− n0)!
q(

n

2)−|E0| d~p.

(9)

We use the beta prior Pr(p|n) = Beta(p; δ, n), and log-

uniform priors, Pr(λ) ∝ 1/λ, and Pr(n) ∝ 1/n. The

(asymptotic) mean degree δ remains as a parameter, as does θ.

With these priors we can integrate out the model parameters

~p in (9) to find that

Pr(A|T+, z) ∝

(

∞
∑

n=n0

F (n)

)

∏

α∈A

Γ(θ)Pr(zα)

Γ(θ + dα)
, (10)

where

F (n) =
(n− 1)!

(n− n0)!

1

B(δ, n)

∫ ∞

0

∫ 1

0

pδ−1(1− p)n−1

(

pe−λ
)|E0|(

1− (1− e−λ)p
)(n2)−|E0|

λ|T+|−1 dpdλ.

(11)

Let F ∗(n) be an approximation to F (n) in which the

(1 − eλ) factor in the integrand is replaced by 1. We may

interpret the version of (10) with F (n) replaced by F ∗(n) as

the probability of both the association A and the event that

all the edges of G yielded at least one transaction, which is a

lower bound on Pr(A|T+, z). Likewise, F ∗(n) ≤ F (n). The

double integral in (11) splits into two easily evaluated single

integrals. Thus

F ∗(n) =
Γ(|T+|)

|E0||T
+|
ϕ(n),

where

ϕ(n) =
(n− 1)!

(n− n0)!

B
(

δ + |E0|, n(n+ 1)/2− |E0|
)

B(δ, n)
.

To estimate the error in the approximation F (n) ≈ F ∗(n), we

note that the peak of the integrand of F ∗(n) occurs at λc =
(|T+|−1)/|E0| and pc = 2(|E0|+δ−1)/(n(n+1)+2δ−4).
Substituting these values into the ratio of the integrands of

F (n) to F ∗(n) yields the factor

ρ(n) =

(

1 +
(|E0|+ δ − 1)e(1−|T+|)/|E0|

n(n+ 1)/2− |E0| − 1

)(n2)−|E0|

, (12)

which is roughly exp(|E0|e
−|T+|/|E0|). This implies that the

approximation F (n) ≈ F ∗(n) works well in the regime

|E0| log |E0| . |T+|. In particular, it works better for hy-

potheses A with small associated values of |E0|.
When using the approximation F (n) ≈ F ∗(n), the sum

over n in (10) requires a sum over ϕ(n). We let

Φ =

∞
∑

n=n0

ϕ(n).

For a fixed value of δ, the sum Φ involves only the values of

n0 and |E0| for a given association hypothesis A. As such,

the values of Φ may be computed numerically and stored

as needed without incurring undue memory overhead. In the

course of computing Φ for specific values of n0 and |E0| we

may also store

nc = argmax
n

ϕ(n).
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Fig. 1. Nine aliases are observed at the plotted locations, as are transactions
between them. Which observations arise from the same ground-truth objects?

The values of n near nc are the ones that dominate, so we may

use the value n = nc in (12) to compute a correction factor

for making the approximation F (n) ≈ F ∗(n). The final result

is the following simple formula for the posterior probability

of A:

Pr(A|T+, z) ∝
Φ ρ(nc)

|E0||T
+|

∏

α∈A

Γ(θ)Pr(zα)

Γ(θ + dα)
. (13)

C. Spatial component

To evaluate the value of (8) required in (13) we let X =
Z = R

r for some fixed r. We let the observation error Pr(z|x)
be an isotropic Gaussian with standard deviation σ:

Pr(z|x) = N (z;x, σ2I) = (2πσ2)−r/2e−|z−x|2/(2σ2).

For the prior there are two natural choices: Gaussian and

uniform.

If we use a unit Gaussian prior Pr(x) = N (x; 0, I) then

Pr(zα) = (2πwα)
r/2N (µα; 0, I)

∏

i∈α

N (zi;µα, σ
2I), (14)

where

wα =
σ2

|α|+ σ2
and µα =

|α|z̄α + σ2

|α|+ σ2
,

with z̄α denoting the mean of zi over i ∈ α.

On the other hand, suppose we let Pr(x) = IR(x)/V : i.e., a

function that equals 1/V in a region R of volume V and is zero

elsewhere. This is the prior used in [3] and elsewhere which

produces results similar to the previous ad hoc association

algorithms. Provided σ is sufficiently small and the zi are

located away from the boundary of R, we may approximate the

integral over R with an unbounded integral. To approximate

a unit Gaussian, we let V = (4π)r/2 (cf. [19]). Then

Pr(zα) = (σ2/(2|α|))r/2
∏

i∈α

N (zi; z̄α, σ
2I). (15)

The advantage of (15) over (14) is that it is simpler and does

not distinguish 0 as a special location. Although (15) is only

valid when σ . 1, this is the region of interest. However, to

assess the behavior near the limit where location data carries

no information it is necessary to use (14).

TABLE I
TEN MOST PROBABLE ASSOCIATIONS. X= TRUTH.

Pr(A) A

0.250 {{1}, {2, 9}, {3}, {4, 5}, {6, 7, 8}}

0.111 {{1}, {2, 9}, {3, 8}, {4, 5}, {6, 7}}

0.072 {{1}, {2, 8, 9}, {3}, {4, 5}, {6, 7}}

0.059 {{1}, {2, 9}, {3}, {4, 5}, {6, 7}, {8}}

0.048 {{1, 4, 5}, {2, 9}, {3}, {6, 7, 8}}

X 0.048 {{1}, {2}, {3}, {4, 5}, {6, 7, 8}, {9}}

0.034 {{1}, {2}, {3}, {4, 5}, {6, 7}, {8, 9}}

0.024 {{1, 4}, {2, 9}, {3}, {5}, {6, 7, 8}}

0.023 {{1}, {2}, {3}, {4, 5}, {6, 7, 8, 9}}

0.021 {{1, 4, 5}, {2, 9}, {3, 8}, {6, 7}}

III. EXAMPLE

The formula (13) does not immediately yield a practical

algorithm for entity resolution. We may compute association

probabilities, but there are an exponentially large number of

associations to evaluate. This problem arises in the association

algorithms used in the data fusion community as well, and

computing the MAP probability exactly for more than two

sensors is known to be NP-hard, so approximate methods

are required [20]. In the two-sensor case there are efficient

integer programming algorithms to find optimal solutions [21],

but there is no analog of such a case in the entity resolution

problem. We will not describe a practical algorithm here, but

only provide an illustrative example of the method on a small

case.

Suppose we are given the data T+
Z shown in Figure 1. Here

there are nine aliases with states that are known to be noisy,

and only a few transactions observed between them. In this

scenario there is not enough data to be confident about any

one entity resolution hypothesis. An analyst would be able to

rule out pairing 1 with 7 (too far apart), but then would have

to resort to some combination of running an entity resolution

algorithm and relying on ad hoc reasoning. For example, “1

and 5 are pretty far apart, but are each connected only to

6, so they might paired,” or “6 and 7 are close, but have no

common neighbor... the same applies to 8 and 9—each of these

might be paired too.” However, it is difficult to sort out the

delicate interplay between network and state information. For

example, using the parameters discussed below we find that

the probability of 6 and 7 arising from the same ground-truth

object is 93%, but the probability for 8 and 9 is only 21%.

We use the parameters σ = 0.5 and θ = 1 in the association

probability formula (13). Of the B9 = 21, 147 possible

partitions A of nine elements, 5017 are compatible with the

multigraph T+ depicted in Figure 1 (having no edges within

the clusters α ∈ A). We compute Pr(A|T+, z) using (13) for

each of these compatible association hypotheses A. The ten

most probable hypotheses are listed in Table I.

The most probable association has a probability more that

twice that of any other. However, its probability is still only

25%, and the correct association is more likely be something
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Fig. 2. Seven ground-truth objects and their graph G (shown with transaction
multiplicities E+). The aliases and transactions that arise from the objects
and edges can be seen by comparing with Fig. 1 and Table I.

else. In fact, the data was simulated using the generative

model we have defined here, so there is a correct association

(indicated by the X), and it is not, in fact, not the most

probable one in Table I, but the sixth most probable. Figure 2

shows the ground-truth scenario corresponding to Figure 1.

There were n = 7 objects, although only n0 = 6 of them

were involved in transactions. The dotted edge e was part of

the graph G ∼ G(7, 0.3), but ke = 0 transactions were drawn

from Po(2.5) for this edge, so it does not belong to E.

For each pair {i, i′} of aliases we may sum Pr(A|T+, z)
over all A that assign i and i′ to the same cluster α ∈ A.

The results are depicted in Figure 3 with white denoting 0

probability and black denoting 1. The ten most probable pairs

{i, i′} of aliases are listed in Table II. Note that there are only

four true pairs (indicated by X), and that they occur in the

top five most likely. The other pair, {2, 9} is the anomaly

that occurs in all five associations more probable than the

correct one in Table I. Referring to Figure 2, we see that the

objects that produced aliases 2 and 9 are rather well separated,

but happened to generate aliases in the direction of the other

object. These objects also both happened to be connected to

the same object, and to no others, and that object happened

not to split into multiple aliases. These coincidences produced

the illusion of 2 and 9 arising from a common object. The

benefit of having a model to use with these small-data cases is

that it can incorporate the possibility of all such coincidences

automatically and assign meaningful probabilities.

For comparison, Figure 4 gives the output of the

Bhattacharya–Getoor algorithm [8] for different values of a

parameter α that controls the relative weight of the structure

and state data. For example, with α = 0.1 the state data is

given high weight, and aliases 8 and 9 (being so close together

in Figure 1) are tightly bound in the dendrogram; whereas for

larger α the structure information (i.e., that aliases 8 and 9

have no common neighbors) increasingly overules the state

information and puts aliases 8 and 9 in different branches of

the dendrogram.

Each dendrogram provides a range of possible associations,

depending on how coarse a solution the user desires. For the

Fig. 3. Pair probabilities

TABLE II
TEN MOST PROBABLE PAIRS. X= TRUTH.

Pr({i, i′}) {i, i′}

X 0.927 {6, 7}

X 0.795 {4, 5}

0.733 {2, 9}

X 0.509 {7, 8}

X 0.494 {6, 8}

0.211 {8, 9}

0.203 {3, 8}

0.202 {1, 4}

0.125 {2, 8}

0.117 {1, 5}

α = 0.2 dendrogram there is a fairly large range (from 0.2972

to 0.3717 in the coarseness parameter), where the result is

the same as the most probable association in Table I. This

dendrogram correctly allows for aliases 6, 7, and 8 to be in

the same cluster—6 and 7 due to their spatial proximity; 7 and

8 due their common neighbor. On the other hand, the α = 0.1
dendrogram, which emphasizes space, binds 6 and 7 tightly,

but not 7 and 8, whereas the opposite holds for the α = 0.3
case.

Only 9 of the 5017 possible associations are represented in a

given dendrogram in Figure 4. Even in the best case (α = 0.2),

the correct association is not included because 2 and 9 bind a

little more tightly than 4 and 5. Of course, a practical algorithm

like this cannot afford to sum over all possible associations.

One benefit of our generative methodology is that it serves as a

baseline for studying entity resolution and assessing algorithm

performance. Thus we may compare how tightly the various

pairs bind in Figure 4 with the probabilities in Table II.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

The model presented in this paper would be directly useful

for cases where there are a very small number of aliases,
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Fig. 4. Dendrograms from the Bhattacharya–Getoor algorithm

provided the object and alias spaces are accurately represented.

When combined with appropriate methods of hypothesis man-

agement it could be useful for much larger cases, leading

to algorithms which not only produce a single, best entity

resolution hypothesis, but also provide probabilities for various

events of interest, such as two specific aliases referring to the

same object.

The larger purpose of this paper, however, is to establish a

simple, standard model of an entity resolution scenario so that

the phenomenon itself may be better understood. For example,

we employ Gaussian distributions not because they are realistic

representations of the type of data that usually requires entity

resolution (such as names), but because Gaussian distributions

in R
r provide the simplest, most generic encapsulation of an

uncertain spatial measurement. Thus, we think of the model

as a Bayesian Idealization of Entity Resolution.

Future work could discuss the phenomenology of entity

resolution, as expressed in this model, in a manner similar

to the study of the Erdős–Rényi model G(n, p) itself, estab-

lishing results analogous to, say, the emergence of the giant

component [12]. Another important line of inquiry would

establish limits on entity resolution performance, as expressed,

for example, by results about the expected entropy of the

posterior distribution over A.

The Erdős–Rényi model can be used as a network model,

but has many shortcomings [22]. A number of more realistic

models have been studied, and we expect entity resolution

modeling to evolve in a similar fashion. Indeed, one way for

it to evolve would be to use these more realistic network

models. For example, the Barabási–Albert model has more

realistic degree distribution, in which some nodes have very

large degree [23]. This is an important feature to represent

in entity resolution, because a common high-degree neighbor

is not very informative: e.g., two aliases are not much more

likely to refer to the same person just because both received

shipments from Amazon.

Bayesian idealization is useful in other network problems as

well. There are good algorithms for link detection (e.g., [24]),

but a lack of formal observation models corresponding to the

plethora of network models that could be used to represent

ground truth. On the other hand, the Stochastic Block Model

(SBM) is simple idealization of the community detection

problem [25], [26], [27]. Recent work with the SBM has

demonstrated phase transitions and the limits of inference
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in community detection [28]. It is our hope that as various

problems are idealized in models like these and the one in

this paper, they will further each other’s development to the

mutual benefit of all.
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