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Abstract— This paper evaluates the performance of tra-
ditional Monte Carlo (FMC) for the nonlinear propagation
of initial uncertainty in the two-body problem: an essential
task in space situational awareness. This is done in light
of a newly developed Markov chain Monte Carlo (MCMC)
based particle approach that combines the benefits of MCMC
sampling with the method of characteristics (MOC) for solving
first order partial differential equations - in this case, the
stochastic Liouville equation (SLE). The resulting MCMC-
MOC ensemble is by construction, equivalent in measure to the
true state probability density. Our recent results on the MCMC-
MOC approach indicate that for systems with divergence-
free dynamics, the FMC and MCMC-MOC ensembles are
statistically consistent. Unfortunately, the unperturbed two-
body problem (Keplerian motion) is one such system. In this
paper, we demonstrate through simulation that the traditional
MC propagated ensemble is indeed equivalent in measure to
MCMC-MOC ensemble, which in turn is the true system
measure by construction. As a result, it is not possible to
improve upon FMC and its slow convergence rate for this
problem.

I. INTRODUCTION

Space situational awareness (SSA) of Earth-orbiting res-

ident space objects (RSOs), including active satellites and

space debris, is known to be a “data starved” problem in that

due to the stress on tracking resources, objects may not be

observed for days if not weeks. Thus, accurate characteriza-

tion of uncertainty associated with these objects is crucial for

maintaining the space surveillance network (SSN) catalog,

and ultimately making high impact decisions related to eval-

uation of collision risks, reacquiring objects from tracking

stations and identification of previously untracked objects in

the SSN catalog. Due to the ever-increasing number of RSOs

and the concomitant sparsity of observational data, there is an

increasing demand for improved uncertainty characterization

and propagation for long periods of time. Additionally,

accurate representation of the propagated uncertainty such as

information about the higher moments leads to more accurate

conjunction assessment and track correlation capabilities. To

address these issues, several methods, including Monte-Carlo

simulations [1], [2], Gaussian mixtures [3], [4], [5], spectral

expansions [6], [7], and direct Fokker Planck equation (FPE)
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solvers [8], [9], [10] have been used.

The focus of this paper is on the particle paradigm for

uncertainty forecasting. For initial uncertainty propagation,

the most prevalent particle approach is the so-called Monte

Carlo technique. Here, a large number of samples are ran-

domly drawn from the initial state-pdf, thereby achieving

a discretization. Each particle is then simply propagated

forward in time through the system dynamics, causing a

rearrangement of the samples. The desired statistics at any

time is computed from the current configuration of the

ensemble. While this approach is simple to implement, it

faces several issues: (i) it is not clear how many particles

are sufficient to accurately characterize the true nature of

uncertainty in the state, (ii) occurrence of particle degeneracy

resulting from their traversal to the tail regions as time moves

forward, especially if the underlying system does not admit

any stationary solutions or contains regions of instability

in its state-space [11]. Essentially, it is not clear how well

the propagated particles represent the uncertainty in the

system at future times after discretization of the initial pdf.

These issues are somewhat controversial and no definitive

resolution is available in the current literature.

Recently, a new particle approach was introduced for solving

the SLE [12], combining the Markov chain Monte Carlo

(MCMC) sampling algorithm [13], [14] with the method of

characteristics (MOC) [15]. In this approach, at any desired

time, a Markov chain is constructed using the unknown state

pdf as the target density. To evaluate the unknown target

at a candidate sample, the SLE is solved via MOC. MOC

requires the existence of a mapping between the current state

and its corresponding initial condition, which is obtained

numerically by back-propagating the candidate through the

system dynamics along a characteristic curve. Then, the SLE

is forward propagated along the same characteristic curve to

obtain the value of the target density at the candidate sample.

Metropolis acceptance criterion finally decides whether or

not the candidate must be admitted into the particle repre-

sentation of the state-pdf at the current time. This approach

has several advantages: (i) MCMC does not require the

specification of a domain: the Markov chain automatically

samples more particles from regions where the probability

mass is high, and (ii) the number of particles required is small

because the samples are located only where they are needed,

and more importantly, they are equivalent in measure to the

current state pdf. Accordingly, they can be used directly to

compute desired expectations of the state.

Typically, a “sufficiently large” FMC ensemble is employed

as the benchmark particle representation of uncertainty. Of
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course, there are no clear guidelines except apparent con-

vergence of statistics to determine how large the ensemble

must be. On the other hand, the MCMC-MOC ensemble is,

by construction equivalent in measure to the true state-pdf.

Our recent results have shown that for initial uncertainty

forecasting, the MCMC-MOC and FMC ensembles are sta-

tistically equivalent if the underlying forcefield is divergence

free (∇ · f = 0). The unperturbed two-body problem (TBP) is

one such system (with trivial divergence), and as a result,

the current paper presents a “negative result” in the sense

that despite the shortcomings of FMC (in particular, its

slow convergence), it is not possible to find a better particle

representation for the TBP.

The remainder of this paper is organized as follows: Section

II presents the equation of motion of the two body system

and its universal F−G solution. Sections III and IV illustrate

in detail the algorithms of FMC and MCMC-MOC. Then,

numerical simulations are shown in Section V that demon-

strate the statistical equivalence of the two methods. Section

VI contains a summary of this study.

II. TWO-BODY PROBLEM (TBP)

The two-body problem concerns the motion of two point

masses that interact only with each other through the force

of gravity, e.g. a satellite orbiting a planet or a binary

star system. In this section, the dynamics of the two body

problem and its so-called universal F −G solution is briefly

reviewed.

A. Problem Statement

We consider the following deterministic nonlinear dynam-

ical system for the initial uncertainty propagation problem,

ẋ = f(t,x), W (t0,x) =W0(x), (1)

where, x∈ℜN is the state of the dynamical system, the vector

function f(t,x) : [0,∞)×ℜN → ℜN is the system dynamics

and W0(x) is the initial probability density function (pdf).

In the current paper, we are interested in the unperturbed

Keplerian dynamics with uncertainty in initial conditions,

described below.

B. Equations of Motion of the Two Body Problem

The fundamental equation of relative motion in the TBP

is given by [16]:

r̈ =− µ

r3
r, (2)

where, µ is the gravitational constant of the central object,

r is the relative radius vector joining the two point masses

(r ∈ ℜ3), r =
√

r2
1 + r2

2 + r2
3 is the magnitude of the radius

vector and ṙ = v is the velocity vector (v ∈ ℜ3). The initial

uncertainty is given by the probability density function (pdf)

W0(x), where x
.
= [r; v]. In the 3D Euclidean space, Eq.2 is

a set of three second-order, or equivalently, six first-order

coupled nonlinear ordinary differential equations (ODEs).

C. Universal F −G Solution

A closed form solution of Eq.2 for r(t) and v(t) is not

known. Here, we employ the so-called Universal F − G

Solution [17] procedure that is built upon Sundman trans-

formation given below:

√
µdt = rdχ, (3)

where χ is a “time-like” variable that is defined for all types

of orbits. This allows the universal solution to be applicable

without a-priori knowledge of the orbit’s eccentricity (essen-

tially the type of conic section). With this transformation,

the map between time (t) and the “universal anomaly” (χ)

is given by the universal Kepler’s equation:

√
µ(t − t0) = r0U1(α,χ)+σ0U2(α,χ)+U3(α,χ), (4)

where;

α =
1

a
, σ =

r ·v√
µ
. (5)

and, where a is the semimajor axis and Un(α,χ) are the

universal functions whose general form is given below:

Un(α,χ) = χn

(

1

n!
− αχ2

(n+2)!
+

(αχ2)2

(n+4)!
− (αχ2)3

(n+6)!
+ ...

)

.

(6)

Given t0, t, r0, and v0, the universal Kepler’s equation can be

numerically solved to determine χ(t). Ultimately, r(t) and

v(t) can be found in the following universal F −G format:

r(t) = F(χ)r0 +G(χ)v0,

v(t) = Ḟ(χ)r0 + Ġ(χ)v0,
(7)

where; the Lagrange coefficients, F , G, Ḟ and Ġ are:

F(χ) = 1− U2(α,χ)

r0
,

G(χ) =
1√
µ
(r0U1(α,χ)+σ0U2(α,χ)),

Ḟ(χ) =−
√

µ

rr0
U1(α,χ),

Ġ(χ) = 1− U2(α,χ)

r
.

(8)

Note that Eqs.7 represent a map between the initial condi-

tions (r(t0),v(t0)) and the current states (r(t),v(t)). This is

crucial for the MCMC-MOC approach described in Sec.IV.

III. FORWARD MONTE CARLO (FMC)

In general, Monte Carlo is a broad class of computational

algorithms that rely on repeated random sampling to obtain

a particle representation of the state pdf at all times. For

the initial uncertainty propagation problem, the initial pdf

is discretized via random sampling and each sample is

propagated forward in time through the system dynamics

(Eq.2) to obtain the particle representation of uncertainty at

future times. In our paper, we refer to this methodology as

forward Monte Carlo (FMC).

Even though FMC is easy to implement and is the popular

choice for propagation of initial uncertainty, there is scarcity
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of theoretical results pertaining to its performance, in partic-

ular its convergence rate. Some of the important questions

regarding FMC for initial uncertainty propagation we are

concerned with in this paper are the following:

1) The foundation of FMC is the law of large numbers

(LLN). However, in terms of implementation, how

“large” the initial ensemble must be in order to repre-

sent the state pdf sufficiently well at a future time?

2) Without even taking the dynamical system into ac-

count, how well do the forward propagated particles

represent the state pdf at a future time?

In this paper, we show that for the two-body problem,

the FMC approach is statistically equivalent to a newly

developed MCMC-MOC method for uncertainty forecasting.

Moreover, by construction the latter method builds a particle

ensemble that is equivalent in measure to the true underlying

system pdf at all times. As a result, it is unfortunately not

possible to improve upon FMC particle results for the two-

body problem.

IV. MCMC-MOC

In this section, we briefly introduce a recently developed

Markov chain Monte Carlo (MCMC) based particle ap-

proach, combining the Markov chain Monte Carlo (MCMC)

sampling technique ([18], [14]) with the method of charac-

teristics for solving first order partial differential equations

(PDEs), to propagation of initial uncertainty.

A. The Liouville Equation

Consider the nonlinear dynamical system as described in

Sec. II-A (Eq.1). The time evolution of the state pdf, i.e.

W (t,x) is given by the stochastic Liouville equation, which

is a first-order linear partial differential equation given as

follows:
∂

∂ t
W (t,x) = L [W (t,x)], (9)

where, L (·) is the stochastic Liouville operator:

L [W (t,x)] =−
[

W ∇ · f+
N

∑
i=1

fi

∂W

∂xi

]

. (10)

On the RHS, the term ∇.f is the divergence of the vector

forcefield, that measures the strength of its source or sink

at a given point in terms of a signed scalar. Alternatively,

the divergence represents the volume density of the outward

flux of a vector field from an infinitesimal volume around a

given point. For example, if ∇.f is a constant, then depending

on its sign, the region of the vector field can be a source

(expanding flow) or sink (contractive flow). In our recent

work [19], we have determined that the performance of FMC

can be evaluated based on whether the underlying system is

divergence-free (∇ · f = 0) or not. In the present context, the

two-body problem has zero divergence (see Eq.2), whereby it

can be shown [19] that the FMC approach will be statistically

equivalent to the true measure of the system.

Also note that since the solution of Eq.9 must be a

valid pdf at all times, appropriate boundary conditions must

be satisfied: limx→∞ W (t,x) = 0, ∀ t ∈ [0,∞). In addition,

the solution must also satisfy the normality condition, i.e.
∫

ℜN W (t,x)dx = 1 for all times t ∈ [0,∞). A particle method

based on Markov chain Monte Carlo and the method of

characteristics is presented next for solving the SLE.

B. Method of Characteristics

The method of characteristics is a powerful technique for

solving first order quasi-linear partial differential equations

(PDEs) of the following form:

Q

∑
i=1

gi(z,u)
∂u

∂ zi

= h(z,u), (11)

where, the unknown u is a function of z ∈ ℜQ. There exist

special trajectories, called “characteristic curves” along with

which the total-derivative of the unknown u(·) can be found.

Along these characteristic lines, the above PDE can be

converted to ODEs as follows [15].

dz1

g1(z,u)
=

dz2

g2(z,u)
= · · ·= dzQ

gQ(z,u)
=

du

h(z,u)
. (12)

The above ODEs are called Lagrange-Charpit equations and

they are valid only along the characteristic lines. Comparing

the stochastic Liouville equation Eq.9 with the general quasi-

linear PDE of Eq.11. We see that z= [t,x]′ and the Lagrange-

Charpit equations for the SLE become:

dx1

f1(x, t)
= · · ·= dxN

fN(x, t)
=

dt

1
=

dW (t,x)

−W (t,x)∇ · f(t,x) , (13)

where, ∇ · f(t,x) represents the divergence of the force

field, thus giving us the time evolution of the pdf along a

characteristic curve as:

t
∫

t0

dW (τ,x(τ))

W (τ,x(τ))
=−

t
∫

t0

∇ · f(τ,x(τ))dτ. (14)

Finally, carrying out the integration we get the current pdf

as

W (t,x(t)) =W0[x0(x(t))]exp



−
t

∫

t0

∇ · f(τ,x(τ))dτ



 , (15)

where, W0[x0(x(t)] is the initial probability valued at the

back-integrated point via its characteristic curve from the

corresponding candidate sample at the current time.

A powerful feature of MCMC is that it does not require the

knowledge of the target measure’s normalization constant

(η) in order to generate its particle representation. More-

over, MCMC can provide estimates of desired expectations

without ever needing to compute the numerical value of η .

MCMC samples are generated by building a Markov chain

and allowing it to evolve through a period of initial tran-

sience, which is called “burn-in”, and all samples generated

during this period are discarded. Once the transience (or

burn-in) is completed, the chain exhibits stationary behavior,

whose distribution by design is the same as the target pdf,

π(x). In the current context, the target pdf is the state
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pdf at the desired time in future. Unfortunately, this pdf

is unknown and therefore MCMC is combined with the

method of characteristics (MOC) to generate its particle

representation.

In our MCMC-MOC method, we utilize the Metropolis

Hastings (MH) [13],[20] algorithm for generating the sample

set,
{

Xi
}D

i=1
∼ π(x). The Markov chain is constructed by

generating a candidate sample from a proposal distribution

(a pdf that is easy to sample) at any desired time. The

value of the state-pdf at this point at the current time,

i.e. W (t f ,xs) where xs is the generated sample, is obtained

via Eq.15 by first “back-propagating” the candidate through

the system dynamics along a characteristic curve to obtain

its corresponding initial condition W0[x0(xs(t))]. Then, the

SLE is forward propagated along the same characteristic

to obtain the target density value at the candidate sample.

The sample is then accepted or rejected based on its relative

likelihood of belonging to the target measure. If a symmetric

proposal pdf is used in the MH algorithm, the new sample

is admitted into the chain with a probability of acceptance

α = min
(

1, Ws
Wc

)

, where Ws and Wc are the values of the

target pdf at the new sample and current chain location

respectively. The ensemble constructed through this process

provides a particle representation of the uncertainty at current

time that is rigorously equivalent in measure to the current

state-pdf [13], [18].

C. Divergence-free Nature of TBP

The SLE (Eq.9) for the two-body problem (Eq.2) can be

written as:

∂W

∂ t
+

3

∑
i=1

(

vi

∂W

∂xi

− µxi

r3

∂W

∂vi

)

=−W [∇ · f(t,x)]. (16)

Recall that r
.
= [x1,x2,x3]

′
, v

.
= [v1,v2,v3]

′
and x

.
= [r; v]. As

mentioned before, the TPB is divergence-free, i.e. ∇.f = 0.

Following Eq.15, the solution of SLE along a characteristic

line is simplified to

W (t,x(t)) =W0[x0(x(t))]. (17)

The above equation indicates that along a characteristic line,

the pdf value remains invariant. In other words, as a particle

starting from an initial condition evolves over the system

manifold, only its location changes, not its “probability” or

“weight” or “significance”. This is highlighted by the above

equation in that the state pdf at any candidate location at

the current time maps into the initial pdf evaluated at the

corresponding initial condition. In the example of the unper-

turbed two body problem, the mapping between the current

and initial states is quite elegant and already given above in

Sec.II via the universal F−G solution. This contributes to the

statistical equivalence between FMC and MCMC-MOC in

the TBP. For more rigorous arguments, the reader is directed

to Ref.[19].

V. SIMULATION RESULTS

In this section, we provide the particle representation of

the desired state pdf for the TBP at different times using the

MCMC-MOC method described above. Statistical results are

compared with forward Monte Carlo (FMC) simulation, in

order to display their statistical equivalence.

A. MCMC-MOC

Let us consider the example of a geostationary orbit as the

nominal orbit with the following parameters: a= 1.5×107m,

e = 0.2, i = 20◦, ω = Ω = 0◦, E0 = 90◦ and P = 5.0785hr.

Assume a multivariate Gaussian distribution N(µ0,σ
2
0 ) as the

initial pdf W0(x), where the µ0 = [r0; v0] and σ2
0 are given

by

µ0 = [−0.7500×107m; 1.2207×107m; 0.4443×107m;

−5.1549×103m/s; 0m/s; 0m/s],
(18)

σ 2
A0 = diag[106m; 106m; 106m; 102m/s; 102m/s; 102m/s]

σ2
B0 = diag[1010m; 1010m; 1010m; 502m/s; 502m/s; 502m/s],

(19)

where, two different initial covariances (low: σ2
A0 and high:

σ2
B0) are used respectively. A series of particle representa-

tions of the time propagated state-pdfs are shown in Fig.1

obtained from the MCMC-MOC approach, demonstrating the

expected deviations from Gaussianity.
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Fig. 1. MCMC Particle Representations of state-pdfs in r1 − r2 − r3 space
at various periods are given in red. Normal Orbit is shown in black line and
initial uncertainty (σ2

B0) is in blue. The results are scaled by 103m.

B. Adaptive Sampling

A crucial factor that affects the performance of MCMC-

MOC is the effectiveness of the proposal density used for

exploring the state-space. The main challenges we must

face are: i) the state pdf resides in a 6-dimensional space,

which entails a very large search-volume (dimensionality

issue); and ii) the variance of the target pdf typically grows

rapidly in a nonlinear manner. A standard MCMC sampler

(e.g. using a fixed Gaussian proposal density) is unable to
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construct a Markov chain with good mixing in the face

of dimensionality and nonlinearity as outlined above. Fig.2

gives an illustration of these difficulties. From Fig.2(a), we

can see that the shape of the target pdf marginal (represented

by a large amount of FMC points) in the r1 − r2 − v1 space

appears as a lathy section. Even worse, there exits a sharp

curvature at one of the extremes near the tail region. Fig.2(b)

shows that two proposed candidates (black square and red

diamond) that almost coincide with each other at current time

in the r1 − r2 − r3 space end up in significantly different

locations upon mapping back to the initial conditions. In

fact, while the first candidate (black square) falls within

the “high density region” of the initial pdf, the other (red

diamond) lies deep in the tail. The reason is clearly visible

in Fig.2(c), namely that the latter candidate falls outside the

target pdf (shown approximately using the FMC ensemble)

in the r1 − r2 − v1 space and as a result, following Eq.17,

falls in the outliers when mapped back to the initial time.

Of-course, there is no way of knowing something like this

would happen a-priori (i.e. without the benefit of the FMC

representation). As a result, the standard Gaussian proposal

is a poor choice and most of the candidates sampled from

this proposal would be rejected, leading to an extremely slow

exploration of the state-space.

It is possible to improve the acceptance rate by reducing

the variance of the proposal. However, this can further reduce

the exploration rate. There is need for a smarter “adaptive”

MCMC sampler that attains a good mixing along with fast

convergence. Most existing off-the-shelf adaptive MCMC

samplers [21], [22], [23] are designed for specific forms

of the target pdf and do not perform well in the current

application.

Given the extremely complex structure of the target pdf in

the current problem, we aimed to employ a proposal as close

to the unknown target. This entails an unsymmetrical distri-

bution, in which case the Hastings acceptance probability is

given as

α = min

(

1,
q(xc|xs)Ws

q(xs|xc)Wc

)

. (20)

The key idea is to use the “propagated proposal at the initial

time (q0)”, as the proposal density at the current time. In

essence, we simply employ the initial proposal, walking

through it and propagating the generated candidate from q0,

at t0, to its location at the current time along the characteristic

curve, while being aware that the numerical value of the

proposal density does not change due to the divergence free

dynamics. Therefore, we are able to draw from an ideal

proposal at the current time without ever knowing its exact

functional form. Of course, this idea works only because the

system is divergence free. Importantly, it obviates the quest

for the ideal proposal at the current time in order to achieve

good mixing, which is an extremely difficult task on account

of the difficulties highlighted above (combination of a high

dimensional search space with severe nonlinearity).
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(a) Particle representation in r1−r2−v1 space at t = 0.6P. Target state-pdf
in green and proposal distribution in pink.
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Proposal distribution

(c) The same neighboring points in r1 − r2 − v1 space.

Fig. 2. An illustration of difficulties in MCMC-MOC sampling for the
TBP.
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C. FMC and MCMC-MOC

Here, we compare the statistics generated from the FMC

and MCMC-MOC ensembles for the TBP. Two different

cases of initial covariance: σ2
A0 (Case A) and σ2

B0 (Case B)

with the same mean µ0 are considered. Fig. 3 and 4 illustrate

the mean and standard deviations at time t = 0.6P as the

number of points increases for both FMC (blue) and MCMC-

MOC (red). The “baseline” (truth) is established by running

an FMC simulation with 1 million samples, shown using

a pink dotted line. The relative error in statistics computed

from the MCMC-MOC method, with respect to the FMC

“baseline” is given in Tables I and II. Also, Fig. 5 shows

the evolution of statistics (mean and standard deviation)

over time (0.1P, 0.2P, 0.3P, 0.5P, 0.7P and 0.9P) for

both MCMC-MOC and FMC. As can be seen the relative

error between statistics gained from MCMC-MOC ensemble

compared with the FMC baseline is extremely small, which

implies statistical equivalence between FMC and MCMC-

MOC.
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Fig. 3. Case A: Low Variance (σ2
A0) Initial Uncertainty Propagation

Relative error of
MCMC-MOC with
FMC baseline

µ of MCMC-MOC
(9×105)

σ of MCMC-MOC
(9×105)

X1 0.0057% 0.5%
X2 0.0016% 0.5%
X3 0.0123% 0.37%
V1 0.0027% 0.48%
V2 0.0061% 0.53%
V3 0.0241% 0.43%

TABLE I

CASE A

It is important to underline some important characteristics

for MCMC-MOC: (i) the shown particles in Fig.1 do not

merely provide a visual feel for the state uncertainty at

various times. These are equivalent in measure to the actual

state pdf and can be used to directly compute expectations.

(ii) it is no longer required to specify the “domain of solu-

tion”. The developed method automatically samples points

from where the pdf is “heavy”; (iii) The solution results
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Fig. 4. Case B: High Variance (σ2
B0) Initial Uncertainty Propagation

Relative error of
MCMC-MOC with
FMC baseline

µ of MCMC-MOC
(9×105)

σ of MCMC-MOC
(9×105)

X1 0.07% 0.18%
X2 0.004% 0.19%
X3 0.05% 0.31%
V1 0.05% 0.24%
V2 0.09% 0.31%
V3 0.08% 0.023%

TABLE II

CASE B

in not only the distribution of particles representing the

state pdf, but also the value of the state-pdf at each of the

particles. Rigorously speaking, MCMC-MOC should always

be the benchmark instead of FMC. However, for systems

with zero divergence, of which the TBP is an instance, they

are equivalent according to above results.

VI. CONCLUSIONS

In this paper, we revisited the performance of traditional

Monte Carlo algorithm for initial uncertainty propagation in

the perturbation free two-body system. Its time varying statis-

tics is compared with a recently developed MCMC based

particle method. In this new approach, at any desired time in

future, a Markov chain is constructed with the unknown state

pdf as the target density. To evaluate the unknown target at a

candidate sample, the stochastic Liouville equation is solved

by the method of characteristics. The Metropolis acceptance

criterion finally decides whether or not the candidate must

be admitted into the particle representation of the state-pdf at

the current time. By construction, it is equivalent in measure

to the true propagated state-pdf. Numerical results in this

paper confirm our theoretical results in [19] that for the

TBP (divergence-free), the statistics of FMC and MCMC-

MOC are coincident, which points to the fact the it is not

possible to improve upon the slow convergence of FMC for

initial uncertainty propagation in the unperturbed Keplerian

dynamics.
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Fig. 5. Time Propagation of Mean and Standard Deviation
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