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Abstract—This paper proposes a novel method to obtain robust
and accurate object segmentations from 3D Light Detection
and Ranging (LIDAR) data points. The method exploits motion
information simultaneously estimated by a tracking algorithm
in order to resolve ambiguities in complex dynamic scenes.
Typical approaches for tracking multiple objects in LIDAR data
follow three steps; point cloud segmentation, object tracking, and
track classification. A large number of errors is due to failures
in the segmentation component, mainly because segmentation
and tracking are performed consecutively and the segmentation
step solely relies on geometrical features. This article presents
a 3D LIDAR based object segmentation method that exploits
the motion information provided by a tracking algorithm and
spatial features in order to discriminate spatially close objects.
After a pre-processing step that maps LIDAR measurements to
an occupancy grid representation, the motions of grid cells are
estimated using independent Kalman filters. A distance depen-
dent Chinese Restaurant Process based Markov chain Monte
Carlo approach is applied to generate different segmentation
hypotheses and decide on the most probable segments by using
motion and spatial features together.

I. INTRODUCTION

Autonomous vehicles are capable of sensing their dynamic

and static environments, which is very crucial for collision

avoidance. Recent sensors like 3D Light Detection and Rang-

ing (LIDAR) [1] provide large amounts of point cloud data for

perception of arbitrary objects in the vehicle’s surroundings.

These sensors directly provide 3D position information of the

surface of objects and in contrast to cameras their performance

is independent of the ambient light conditions; so night time

operation, cloudy weather or shadowy areas do not affect their

operation. These advantages make LIDAR a suitable sensor for

environment perception.

However, in order to perceive the dynamics in the vehicle’s

environment, objects need to be tracked in the high volume

point cloud data. Typically, Multi Target Tracking (MTT)

methods [2]–[5] are applied to estimate the states of all

detected targets such as vehicles, pedestrians, bicyclists. These

methods follow a three step approach encompassing point

cloud segmentation, object tracking and track classification.

MTT methods perform object segmentation step first, which

tends to unavoidable segmentation errors. These errors in turn

cause erroneous track estimates. So improving the segmen-

tation process is important to achieve progress on the whole

recognition and tracking process.

In urban scenarios, traffic participants are assumed well

segmented from each other. Therefore, current point cloud

segmentation approaches rely on geometrical features only.

However the assumption may not hold, especially for bicyclists

and pedestrians. They often get close to other objects such as

parking cars. Under these circumstances, segmentation gets

difficult and under-segmentation of objects can occur.

In this paper, we present a novel method to obtain robust and

accurate object segmentations from 3D LIDAR data points.

The motivation of our approach is exploiting the motion

and spatial information simultaneously to discriminate close

objects. In order to obtain motion features, we first address

how a motion field of the surrounding environment is formed

using 3D LIDAR measurements. Then a distance dependent

Chinese Restaurant Process (ddCRP) [6] is adapted in order

to use both spatial and motion features together for the

segmentation of the point clouds. The Markov chain Monte

Carlo based ddCRP method models spatial dependencies and

enforces spatial contiguity of the inferred parts.

This paper is organized as follows. Section II starts with a

discussion of previous related work. Section III explains the

pre-processing of raw measurements and estimation of motion

features. Section IV shows how the proposed Bayesian non-

parametric method is used for segmentation of close objects.

In Section V the performance of the proposed framework is

evaluated with real data. Section VI concludes the paper and

gives an outlook on future work.

II. RELATED WORK

LIDAR based MTT approaches [2]–[5] perform the segmen-

tation and tracking components consecutively and use only

spatial features in order to segment scenes. Himmelsbach and

Wuensche [7] apply a bottom-up approach by considering the

appearance and tracking history of targets to discern static and

moving objects.
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Fig. 1. (a) Raw data, (b) Non-ground measurements. Segmentation blobs in black boxes represent potential moving objects (c) Purple regions show the
estimated motion field of the scene

In order to estimate motion states in the scene, we address

the Visual Motion Field Estimation (VMFE) methods [8]–[10].

They are applied to determine motion vectors in a scene using

colour information. VMFE methods are capable of tracking all

dynamic scenes without prior segmentation. This avoids errors

of perception systems due to wrong segmentations. Recently

several 3D VMFE methods were proposed [11]–[13]. However

visual sensors are not able to provide 3D positions directly, so

obtaining 3D positions from 2D images causes noisy estimates.

The advantage of 3D LIDAR over visual systems is that

they directly provide 3D positions of points, but they do not

provide colour information. In order to exploit MFE method

with 3D point cloud data, measurements are mapped to an

occupancy grid representation with the assumption of each

grid cell having its own motion state. These motion states are

estimated using independent Kalman filters. This approach is

similar to [14], who also regard the scene as a motion field,

but use a spatial smoothing algorithm to get tracking results.

After estimating the motion state of each grid cell and

doing segmentation according to their spatial correlations, the

problem turns into determining the number of subsegment

regions representing different objects in a single segmentation

blob. We expect to find spatially contiguous grid cells by

using their motion and spatial features. A distance dependent

Chinese Restaurant Process (ddCRP) [6] was adapted to solve

this clustering problem. The ddCRP is an extension of the

Chinese Restaurant Process (CRP) [15]. The CRP relies on a

exchangeability assumption, which is necessary because this

model is based on a Dirichlet process. The CRP and its

connection to the Dirichlet process is described in [16]. The

ddCRPs make no exchangeability assumption and are therefore

capable of modelling spatial relations. For instance, nearby

grid cells are more likely to cluster together. In [17], the

ddCRP is used as a nonparametric clustering technique and

combined with a spectral dimensionality reduction method.

Ghosh et al. [18] apply the spatial distance dependent CRP

for natural image segmentation. In [19], potentially unbounded

parts of an articulated object from aligned meshes in different

poses are discovered with the ddCRP approach.

III. MOTION STATE ESTIMATION

Recent 3D sensors provide large amounts of point cloud

data for perception of arbitrary dynamic objects. The data

used in this paper is gathered by a Velodyne HDL-64D

LIDAR [1]. This sensor has a frame rate of 10 Hz and a

360 degree horizontal field of view. It produces approximately

1.1 million point measurements per second, which makes

it impossible to exploit MFE methods directly. Therefore,

measurements are mapped to an occupancy grid Gr to reduce

the amount of data. All points at time t are projected to grid

cells grt =
{

grt,1, grt,2, ......grt,N
}

where grt,i = (grx, gry)
represents the center of mass of points in the grid cell. The

average height of points in a grid cell is used to remove points

belonging to the ground. Grid cells are assumed to be the

basic elements for motion estimation, which means that each

grid cell is assumed to have its own velocity vector. After a

connected components algorithm using an 8 neighborhood on

the grid is invoked to extract segmentation blobs, thresholding

on the size of the extracted blobs is applied to prune huge

blobs. This avoids tracking the grid cells of big static structures

such as buildings. The result of these steps is illustrated in

Figure (1) (a) and Figure (1) (b). The extracted segmentation

blobs are checked for a necessary sub-segmentation using the

ddCRP introduced later in Section IV. First, we explain the

motion state vector xt estimation, which consists of a data

association and a velocity vector estimation part.

A. Data Association

This section explains the process of associating grid cells

of the previous and current scans. A Nearest Neighbor (NN)

filter is used for the data association process. Predicting the

cell locations from state vectors of the previous scan yields a

validation gate. If there are measurements lying in the gate, the

closest neighbor measurement is accepted based on Euclidian

distances. Otherwise the current grid cell is not associated

with any predicted measurements and a new Kalman filter is

generated for that cell.

B. Kalman Filter

In order to solve the state vector estimation problem,

independent linear Kalman filters are applied to each grid cell
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Fig. 2. Effect of the scaling parameter α on the cluster structure of a segmentation blob which contains two close objects. Points represent the grid cells (a)
when α = 10, (b) when α = 1, (c) when α = 10

−4

in the current scan. If a grid cell grt,i is associated with grt−1,i

from the previous scan, the predicted state of grt−1,i is used

to initialize the motion state of the grid cell grt,i in the current

scan, which is then updated with the coordinates of grt,i. The

state vector xt at time t is evolved from the state vector xt−1

according to the Kalman filter model in Equation (1).

xt = Ftxt−1 + wt (1)

Ft is the time invariant state transition model and wt is

the process noise, wt ∽ N (0,Qt) with covariance Qt. The

state vector xT
t contains the estimated center of mass of

the points in the grid cell and their corresponding velocities
[

ĝrx, ĝry, vx, vy
]

. An observation grt of the state vector xt at

time t is explained by

grt = Htxt + vt (2)

where Ht is the time invariant observation model and vt is

the observation noise, vt ∽ N (0,Rt) with covariance Rt.

IV. SEGMENTATION WITH DISTANCE DEPENDENT CRP

In Section III nearby grid cells are extracted into seg-

mentation blobs based on the Euclidean distance only. If

objects get close to each other, under-segmentation problems

can occur. The motivation of our approach is to exploite

motion and spatial features simultaneously in order to dis-

criminate the close objects. For this purpose we employ a

non-parametric Bayesian clustering technique. Adjacent grid

cells in a segmentation blob with similar state vectors xt are

grouped to subsegments, or clusters z (ci), which then form the

individual objects in a blob. To extract these objects, we need

to find contiguous regions of grid cells assigned to the same

cluster and simultaneously determine the unknown number of

clusters in the extracted blobs. A distance dependent Chinese

Restaurant Process (ddCRP) is adapted to solve this clustering

problem.

The ddCRP is an extension of the Chinese Restaurant

Process (CRP). The CRP is typically introduced as a customer

to table assignment process in a restaurant with a potentially

infinite number of tables. Costumers enter the restaurant one

by one and costumer i sits down at a table z (ci) with a

probability proportional to the number of people already sitting

at that table or picks up a new table with a probability

proportional to a scaling parameter α. At the end of the

process, the occupied tables yield the partition of the data.

The CRP is an exchangeable model, i.e. the order of the

observed data does not affect the posterior distribution over

partitions. However, exchangeability does not hold for the

segmentation of extracted blobs, because the coordinates of

grid cells need to be considered to obtain contiguous regions.

Unlike the CRP, the distance dependent CRP provides a

method to model features and non-exchangeability by linking

customers to other customers instead of tables. Customers

i and j sit together with a probability proportional to a

decreasing function of the distances f(dij) or customer i can

sit alone with a probability proportional to α. This is described

in Equation (3).

p (ci = j|D, f, α) ∝

{

f(dij) if i 6= j,

α if i = j.
(3)

In our case the grid cells are the customers and a window

decay function f(d) = 1 [d < a] is used to connect grid cells.

This function enforces the algorithm to constitute spatially

connected clusters in a segmentation blob. An example of

the effect of the parameter α on the cluster structure of a

segmentation blob is given in Figure (2). A smaller α pushes

the algorithm towards larger clusters.

A mixture model of a restaurant can be defined with a

base distribution G0, which is a distribution over cluster

distributions. Then the data are drawn as follow:

1) For each customer, sample an associated link ci ∽

ddCRP (α, f,D). Tables z (c) are deterministic assign-

ments of the sampled links c = [c1, c2, .., cN ]
2) For each table, draw parameters θk ∽ G0

3) For each customer, sample data xi ∽ F (θk)

Note that in this section we leave out the time indices t of

x for simplicity so xi denotes the state vector of grid i in the

current time frame t.

In our problem, the restaurant represents each extracted

segmentation blob from the scene, tables denote the clusters,
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Fig. 3. (a) A bicyclist is getting closer to a parking car (b) For visualization, a bounding box is fitted to the objects which are considered. (c) The bicyclist
and the car are extracted in a segmentation blob as one object by using spatial features only (d) The bicyclist and the car are discriminated successfully by
the proposed ddCRP based segmentation method. A thick solid line shows the discrimination of the segmentation blob into two partitions which belong to
the bicyclist and the parking car.

or objects in a segmentation blob, and customers are the grid

cells.

Adjacent grid cells are linked together using Equation (3).

Grid cell assignments are used to sample estimated motion

features. The posterior distribution of grid cell assignments

conduces to a posterior over clusters, which provides the

number of objects in a segmentation blob.

A. Posterior Inference

Objects in segmentation blobs can be found by posterior

inference which determines the conditional distribution of

the hidden variables given the observations. However the

posterior is intractable due to huge combinatorial number of

possible customer layouts [6]. Therefore Gibbs sampling [20],

a Markov Chain Monte Carlo (MCMC) sampling [21], is used

for the inference. We iteratively sample each latent variable

ci given other latent variables c−i and observations x as in

Equation (4).

p (ci|c−i, x,Ω) ∝ p (ci|D,α) p (x|z (c) ,Θ) (4)

where Ω = {D,α,Θ} is the hyperparameters. D is dis-

tance, α is the scaling factor, and Θ is the base distribution pa-

rameter. The first term of Equation (4) is given in Equation (3)

as the ddCRP prior. The second one is the likelihood term of

the observation under the partition z (c) where c = (c−i ∪ ci).

Gibbs sampling in Equation (4) is implemented in two

stages. First the current link ci is removed from the cluster

configuration. Removing a customer link either splits a cluster

or does not affect the current structure. On the one hand, if ci
is the only connection between data point i and its cluster, it

splits. On the other hand, if there are alternative connections

to the cluster or if ci is a self-link, clusters stay unchanged.

In the second stage of Gibbs sampling, it is considered

how each alternative new link affects the likelihood of the

observations by replacing the current customer link ci. Replac-

ing the customer link either joins the clusters or leaves them

unchanged. On the one hand, when reassigning the customer

link ci connects the customers of its cluster with customers

from a different cluster, these two clusters are joined. On the

other hand, if ci is a self link or if it is linked to a customer

that is already in this cluster under z (c−i), the cluster structure

remains the same.

The sampler finds out the number of clusters in a segmenta-

tion blob by removing and randomly reassigning the customer

links, or grid cell assignments in our case. The likelihood term

in Equation (4) can be decomposed as shown in Equation (5).
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Fig. 4. (a) A person is walking along a parking car. Red dashed lines show the trajectory of the person. (b) A segmentation algorithm which considers only
spatial features extracted two objects in the same segmentation blob (c) The proposed ddCRP based segmentation method discerns the person in the blob. A
thick solid line shows the separation of the segmentation blob into two partitions which belong to the person and the parking car

p (x|z (c) ,Θ) =
K
∏

k=1

p
(

xz(c)=k|Θ
)

(5)

where K is the number of clusters, and xz(c)=k denotes the

observations assigned to cluster k. Observations at each cluster

are sampled independently by using the parameters drawn

from the base distribution G0. Then the marginal probability

is computed as follows,

p
(

xz(c)=k|Θ
)

=

∫





∏

i∈z(c)=k

p (xi|θ)



 p (θ|Θ) dΘ (6)

Here i denotes the indices assigned to cluster k and Θ

is the parameter of the base distribution G0. If p (xi|θ) and

G0 are selected as conjugate, this enables the marginalization

of the cluster parameter θ in order to compute Equation (6)

analytically [22].

In Gibbs sampling, we need to compute cases that alter the

cluster structure. Considering that m and l denote the cluster

indices joined to cluster k, we can specify a Markov chain as

follows,

p (ci|c−i, x,Ω) ∝

{

Λ (x, z,Θ) if ci joins m and l,

p (ci|D,α) otherwise.
(7)

where

Λ (x, z,Θ) = p (ci|D,α)
p
(

xz(c)=k|Θ
)

p
(

xz(c)=m|Θ
)

p
(

xz(c)=l|Θ
) (8)

When Equation (7) converges to a stationary posterior,

it provides number and regions of objects in an extracted

segmentation blob.

V. RESULTS

This section presents the real world data results of our pro-

posed method for some challenging segmentation scenarios.

A data set of the Karlsruhe Institute of Technology (KIT) is

used for the experiments [23].

In order to estimate motion features from 3D point clouds,

we first mapped the points on an occupancy grid as described

in Section III. Grid cells have a resolution of 0.2 m in x and

y dimensions. After removing the ground points, a connected

components algorithm using 8 neighborhoods is applied to

extract segmentation blobs. A threshold is set to apply a

Kalman filter to the grid cells. If the height, length or width of

a segmentation blob is more than 10 meter, motion vectors of

grid cells in the blob are not estimated. This avoids tracking

the grid cells of static structures such as buildings. The motion

field estimation process is illustrated in Figure (1). For the

Kalman filter from Section III-B, the state transition matrix

Ft and the observation matrix Ht are given as

Ft =









1 0 △t 0
0 1 0 △t

0 0 1 0
0 0 0 1









where △t is the scan rate of the 3D LIDAR which is 0.1

seconds in our experiments.

Ht =

[

1 0 0 0
0 1 0 0

]

After selecting potentially moving segmentation blobs and

estimating the motion features of their grid cells, the proposed

MCMC based ddCRP is applied to evaluate its performance.

The ddCRP explores the most likely partition structures in

each segmentation blob. The estimated velocities in two di-

mensions are converted to one-dimensional movement direc-

tions as the feature vector for posterior inference. A window

decay function f(d) = 1 [d < a] is used with a value of

a = 1 to connect only adjacent grid cells. F (θk) is a Gaussian

distribution with θk =
(

µk, σ
2
k

)

. Figure (2) illustrates the

effect of the scaling parameter α on the cluster structure

of a segmentation blob which contains two close objects.
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Fig. 5. (a) Two bicyclists are moving coherently (b) The extracted segmentation blob involves the two bicyclists and a parking car (c) Although the proposed
method discriminates the car from the bicyclists, it fails to separate the two coherently moving bicyclists. A thick solid line shows the separation of the
segmentation blob

The points represent the grid cells. For larger α values,

the proposed algorithm intends to find non-robust smaller

partitions, especially for grids where objects are close to each

other. It is obviously seen in Figure (2) that a smaller scaling

parameter α pushes the algorithm to larger and more robust

clusters in segmentation blobs, so we set α = 10−4. The base

distribution G0 is a conjugate prior of the data generating

distribution. Its parameters are Θ =
{

µ0, σ
2
0

}

. Although we

independently run the ddCRP sampler with 30 iterations for

each segmentation blob, it reached its stationary distribution

within the first 10 iterations during our experiments.

Figure (3) depicts a scene where the assumption of well-

segmented traffic participants does not hold. A bicyclist is

getting closer to a parking car. The method described in

Section III is performed to extract segmentation blobs by

using spatial features and to estimate motion vectors of their

corresponding grid cells. When two objects come close to each

other, the algorithm extracts them in a segmentation blob as

one object. That is shown in Figure (3) (c). For visualization,

we fit the bounding box to the objects which we consider.

Exploiting motion and spatial features together by using the

proposed ddCRP based segmentation method, the bicyclist and

the car are discriminated successfully. This can be seen in

Figure (3) (d). The thick solid line in Figure (3) (d) represents

the separation of the segmentation blob into two partitions

which belong to the bicyclist and the parking car.

In the next example, a person is walking along a parking

car as shown in Figure (4). Red dashed lines in Figure (4) (a)

represent the trajectory of the person. When the segmentation

algorithm which considers only spatial features is applied,

the person can not be distinguished from the car and both

objects are extracted in the same segmentation blob as given

in Figure (4) (b). As our proposed method models the spatial

correlation of objects, it benefits from the estimated motion

features in the segmantation blob. Figure (4) (c) illustrates

that the proposed ddCRP based segmentation method discerns

the person in the blob.

In Figure (5) (a), two coherently moving bicyclists are

displayed. When they get closer to each other and a parking

car, their segmentation blob is extracted. It involves these

three close objects which is illustrated in Figure (5) (b).

Although our proposed method discriminates the car from the

two bicyclists, it fails to separate the two bicyclists as shown

in Figure (5) (c). As the spatial features are not sufficient for

discrimination and the movement of the objects is coherent,

the proposed method inherently miscarries. In order to handle

this problem, some kind of appearence model can be integrated

to the algortihm in addition to spatial and motion features, but

this is subject to future work.

We note that specific tracking algorithms are not central

to this paper. The center mass of points in the separated

segmentation blobs and averaged velocities of their grid cells

can be used for tracking approaches. Least mean square based

spatial smoothing methods [14], [24], [25] can be applied to

motion fields in order to obtain more accurate velocities for

tracking stage.

VI. CONCLUSION

We have presented a novel segmentation method for close

objects in 3D LIDAR point clouds. When objects get closer to

each other, segmentation gets more difficult and often results

under-segmentation in objects. The proposed method is ex-

ploiting the motion and spatial information simultaneously to

discriminate close objects and to avoid the under-segmentation

problem. In order to constitute motion features, a motion field

of the surrounding environment is estimated from 3D LIDAR

point clouds. A Markov chain Monte Carlo based distance

dependent Chinese Restaurant Process framework is proposed

to offer different segmentation hypotheses and decide on the

most probable segments by exploiting motion and spatial

features together.

The advantages of our proposed method are discussed for

challenging real world scenarios. Using motion and spatial

features together in the ddCRP framework produces successful
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segmentation results even when objects get very close to

each other. The inherit limitation of our approach is that

coherently moving objects can not be discriminated if they

are spatially very close. In order to handle this problem, some

kind of appearance model can be integrated to the algorithm in

addition to spatial and motion features. The proposed method

is not capable of running in real time due to the Markov chain

inference. It would be interesting to apply a sequential Monte

Carlo approach as a future work in order to turn the approach

into a real time algorithm.
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