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Abstract—For linear systems, the optimal filtering is provided
by the celebrated Kalman filter. For nonlinear systems, only
suboptimal filters can be obtained in general. The Extended
Kalman filter (EKF) is such a suboptimal filter. It helped the
promotion of the Kalman filter. With the development of more
advanced nonlinear filters, however, the EKF is receiving less
and less attention because it performs the worst most often.
The EKF is based on the first-order Taylor series expansion.
Ideally, the ground truth of the state should be picked as
the expansion points, which are unfortunately unavailable in
estimation problem. Instead, the most recent estimates are used.
As a result of this misspecification, the EKF may have degraded
performance or even failure. To overcome this, a multiple model
extension to the EKF is proposed in this paper. Its key idea is
to use multiple probabilistically weighted points to represent the
whole state space. Then the linearization about each weighted
point will lead to a possible model. Correspondingly, the original
nonlinear filtering problem is changed into a variable structure
multi-model estimation problem. How to design finite number
of probabilistically weighted points to approximate the posterior
densities is suggested. Numerical examples show that the pro-
posed extension to the EKF is quite promising when compared
to several existing competitive nonlinear filters.

Keywords: Nonlinear filtering, extended Kalman filter,

Taylor series expansion, Gaussian assumption, multiple

model estimation, model set design.

I. INTRODUCTION

Due to the introduction of the state-space formulation, the

Kalman filter [1] was a breakthrough for the estimation of

dynamic systems compared with the Wiener filter. It is the

optimal filter for linear systems. However, the assumptions

required by the Kalman filter are too stringent. For example,

the system has to be linear Gaussian and driven by uncorre-

lated white noises. Unfortunately these assumptions can not

be met in many real applications. A main reason is that most

systems in reality are nonlinear. This prevents the direct use

of the Kalman filter for nonlinear systems. To still apply the

Kalman filter for nonlinear systems, some modifications to

it then had to be made. Among all, the EKF is probably

the earliest and most well-known one. The key idea of it is

to linearize the nonlinear system using the first-order Taylor
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series expansion (TSE) so that the resultant linearized system

fits the assumptions of the Kalman filter. This extension is very

natural and a very typical engineering way to handle nonlinear

problems.

Historically, the EKF helped boost the use of the Kalman

filter in practical applications, e.g., navigation, orbit deter-

mination, target tracking, weather forecasting, finance, etc.

However, performance degradation or even failure were also

reported when the EKF was applied in many nonlinear prob-

lems. A lot of work had been done on how to improve

the performance of the EKF. For example, heuristic ways

[2] include increasing the process noise covariance matrix

or multiplying the state prediction covariance matrix by a

fudge factor (slightly) larger than unity. The second-order EKF

uses the Taylor series expansion up to the second order and

the iterated EKF iteratively linearizes the system about the

estimates from the last iteration.

In the recent years, more and more advanced nonlinear

filters were developed, including the Unscented filtering [3],

[4], Cubature Kalman filter [5], Divided Difference filters

[6] (DD1, DD2), Gaussian-Hermite Quadrature filter [7], [8],

linear regression Kalman filter [9], etc. All these nonlinear

filters are based on the linear minimum mean-squared error

(LMMSE) estimator [10]. Different nonlinear filters just have

different ways to approximate the first two moments required

by the LMMSE estimator. In the Unscented filtering, the first

two moments are approximated by the Unscented transfor-

mation which depends on well selected sigma-points. The

Divided Difference filters use the first-order and second-order

Stirling’s interpolation to approximate the required first two

moments, which lead to DD1 and DD2, respectively. The Cu-

bature Kalman filter is based on a third-degree spherical-radial

cubature rule that provides a set of cubature points. Based

on a moment-matching Gaussian assumption, the Gaussian-

Hermite Quadrature filter uses Gauss-Hermite quadratures to

compute the first-two moments. The linear regression Kalman

filter first finds the optimal statistical linearization of the

nonlinear system in the LMMSE sense and then applies the

Kalman filter as done in the EKF.

Another significant progress on nonlinear filtering in the

recent years is the particle filter [11]. The goal of the particle

filter is to approximate the posterior density of the estimand
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(the quantity to be estimated) by a bunch of randomly gener-

ated particles. This is different from the goal of the nonlinear

filters introduced above, which all intend to obtain just the first

two moments of the posterior density. However, there seems to

be an overuse of the power of the particle filter especially when

the goal of nonlinear filtering is not to obtain an estimate of the

posterior density but just its first two moments. For example,

in most target tracking applications, our goal is just to provide

estimates of the states of the targets of interest and associated

evaluation as to how good the estimates are. That is, we are

just interested in the first two moments of the states of the

targets. But the particle filter is still used in some tracking

applications. This is mainly motivated by the fact that once

the density is known, we can easily figure out the associated

first two moments. Nevertheless, to obtain the whole density

is much harder than just to obtain its first two moments in

general.

With the increasing development of more advanced non-

linear filters, as demonstrated by many comparisons in the

literature and practical applications, there seems to be a

common view that the EKF is probably the worst among

all. However, they are not sufficient to suggest a complete

replacement of the EKF by some other nonlinear filters, such

as the Unscented filter or Cubature Kalman filter, etc. It is

well known that the EKF hinges on the TSE about an expan-

sion point. In a small neighborhood of the expansion point,

the TSE does provide a good approximation to the original

nonlinear function. However, outside the small neighborhood,

the approximation accuracy could be very poor. Ideally, the

expansion point should be the ground truth of the system state.

Unfortunately the ground truth is not available because it is

exactly the quantity to be estimated in all estimation problems.

Therefore, in the EKF, we just replace the ground truth by its

best estimate. That is why the expansion point for the nonlinear

dynamic system is the previously updated estimate and the

expansion point for the nonlinear measurement system is the

predicted estimate. However, the estimate is just the filter-

calculated “best” one and it is not necessarily the truly best

one. Even if the estimate is really the best one, there may

still be a significant gap between the estimate and the ground

truth. So the reason for the performance degradation or even

failure of the EKF in some cases is not that the framework

of the TSE is problematic. On the contrary, the TSE based

linearization is so natural and has found successful use in tons

of engineering applications. The performance degradation or

even failure should be mainly due to the use of inappropriate

expansion points. If we can find better expansion point, the

EKF should still be a quite competitive nonlinear filter. So the

purpose of this paper is to develop a new better performed

nonlinear filter still based on the framework of the TSE.

The performance degradation or even failure of the EKF can

also be understood from the angle of decision process. Given

the posterior density of the estimand, the EKF just picks its

mean as the expansion point. In terms of decision process, this

is a hard decision. It eliminates the possibility of the other

points in the state space completely although all of them are

also possible. As we all know, nonlinear filtering is state esti-

mation for nonlinear systems. The effect of the gap between

the hard decision, i.e., the “best” estimate, and the ground truth

may accumulate over time. If the hard decision deviates from

the ground truth too much at a time instant, there is almost

no way for the successive expansion points to be closer to the

ground truth. So from this angle, to reduce the decision error, a

soft decision is preferred. That is, each point in the state space

should be given a probabilistic chance. Unfortunately, the state

space is continuous and computationally it is infeasible if we

try to enumerate all points probabilistically in the whole state

space.

In this paper, a multiple model extension of the EKF is

proposed. Its key idea is to use multiple probabilistically

weighted points to represent the whole state space so that the

linearization about each point will give a possible model. Then

the original nonlinear filtering problem is naturally changed

into a variable structure multi-model estimation problem.

How to design a finite number of probabilistically weighted

points to approximate a continuous state space is suggested.

Numerical examples show that the proposed framework is

quite competitive relative to several existing popular nonlinear

filters.

This paper is organized as follows. Sec. II states the prob-

lem. Sec. III analyzes the reason for performance degradation

or even failure of the EKF in some cases. Sec. IV presents the

proposed multi-model extension of the EKF. Sec. V provides

suggestions on how to approximate a continuous probability

density function (pdf) by a discrete probability mass function

(pmf). Sec. VI provides numerical examples to illustrate the

effectiveness and efficiency of the proposed nonlinear filter.

Sec. VII concludes the paper.

II. PROBLEM FORMULATION

Consider the following typical form of a nonlinear stochas-

tic dynamic system

xk+1 = fk(xk) + wk

which is observed through the following nonlinear measure-

ment model

zk = hk(xk) + vk

It is assumed that 〈wk〉 and 〈vk〉 are both zero-mean white

Gaussian noise sequences with covariance Qk and Rk, respec-

tively, and uncorrelated with each other. Also, x0 ∼ N (x̄0, P0)
and x0 is uncorrelated with both 〈wk〉 and 〈vk〉.

Remark 1: For simplicity, both 〈wk〉 and 〈vk〉 are assumed

to additive. However, all discussions below are also directly

applicable to non-additive cases.

For a state filtering problem, our goal is to find the best

estimate of the system state xk given the measurement se-

quence zk = {z1, · · · , zk} up to the most recent time instant

k. It is well known that the optimal estimate of xk in the

sense of minimum mean-squared error (MMSE) is provided by

the conditional mean E[xk|zk] and its associated MSE matrix

cov(xk|zk), which are the first two moments of the posterior
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distribution p(xk|zk) of xk. However, due to the nonlinearity

of the dynamic system and measurement model, in most cases

only some kind of approximations to them can be found in

reality. So our goal of state filtering is changed to find a good

approximation to E[xk|zk] and cov(xk|zk).

III. PERFORMANCE ANALYSIS OF THE EXTENDED

KALMAN FILTER

For linear Gaussian systems, the Kalman filter can obtain

E[xk|zk] and cov(xk|zk) exactly. However, it can not be

directly applied to nonlinear systems. The EKF is an exten-

sion of the Kalman filter for nonlinear cases. It provides an

approximation to E[xk|zk] and cov(xk|zk). The idea of it is to

use the first-order TSE to approximate the original nonlinear

systems so that the Kalman filter can be applied. However,

to use the TSE, a key issue is the selection of the expansion

point. Ideally, the expansion point should be the ground truth

of the system state. That is, ideally one cycle of the EKF

(abbreviated as iEKF below) should be as follows.

Time update:

x̂k|k−1 = E[xk|zk−1]

≈ fk−1(x
∗
k−1) + F̄k−1(x̂k−1|k−1 − x∗

k−1)

xk − x̂k|k−1 ≈ F̄k−1(xk−1 − x̂k−1|k−1)

Pk|k−1 = cov(xk|zk−1) ≈ F̄k−1Pk−1|k−1F̄
′
k−1 +Qk−1

where

F̄k−1 =
∂fk−1(xk−1)

∂xk−1

∣

∣

∣

∣

xk−1=x∗
k−1

and x∗
k−1 is the ground truth of xk−1.

Measurement update:

ẑk|k−1 = E[zk|zk−1] ≈ hk(x
∗
k) + H̄k(x̂k|k−1 − x∗

k)

z̃k|k−1 = zk − ẑk|k−1 ≈ H̄k(xk − x̂k|k−1) + vk

Sk = cov(zk|zk−1) ≈ H̄kPk|k−1H̄
′
k +Rk

Kk = cov(x̃k|k−1, z̃k|k−1) ≈ Pk|k−1H̄
′
kS

−1
k

x̂k|k = E[xk|zk] ≈ x̂k|k−1 +Kk(zk − ẑk|k−1)

x̃k|k ≈ xk − x̂k|k−1 −Kk(zk − ẑk|k−1)

= (I −KkH̄k)(xk − x̂k|k−1)−Kkvk

Pk|k = cov(xk|zk) ≈ Pk|k−1 − Pk|k−1H̄
′
kS

−1
k H̄kPk|k−1

where

H̄k =
∂hk(xk)

∂xk

∣

∣

∣

∣

xk=x∗
k

and x∗
k is the ground truth of xk.

Unfortunately both x∗
k−1 and x∗

k are not available because

they are exactly the quantities to be estimated. To overcome

this, they are replaced by their best estimates in the EKF. One

cycle of the EKF can be summarized as follows.

Time update:

x̂k|k−1 = E[xk|zk−1] ≈ fk−1(x̂k−1|k−1) (1)

Pk|k−1 = cov(xk|zk−1) ≈ Fk−1Pk−1|k−1F
′
k−1 +Qk−1

where

Fk−1 =
∂fk−1(xk−1)

∂xk−1

∣

∣

∣

∣

xk−1=x̂k−1|k−1

Measurement update:

ẑk|k−1 = E[zk|zk−1] ≈ hk(x̂k|k−1) (2)

Sk = cov(zk|zk−1) ≈ HkPk|k−1H
′
k +Rk

Kk ≈ Pk|k−1H
′
kS

−1
k

x̂k|k = E[xk|zk] ≈ x̂k|k−1 +Kk(zk − ẑk|k−1)

Pk|k = cov(xk|zk) ≈ Pk|k−1 − Pk|k−1H
′
kS

−1
k HkPk|k−1

where

Hk =
∂hk(xk)

∂xk

∣

∣

∣

∣

xk=x̂k|k−1

As can be clearly seen from the above, the key of the EKF is

the use of the first-order TSE. Ideally, the expansion point for

the nonlinear state transition function fk−1(xk−1) should be

x∗
k−1 and the expansion point for the nonlinear measurement

function hk(xk) should be x∗
k. But due to the unavailability

of them, they are replaced by their “best” estimates x̂k−1|k−1

and x̂k|k−1, respectively. However, on one hand, they are just

the filter-calculated “best” estimates, but not necessarily the

truly best ones. On the other hand, even if they are the truly

best ones, there is still a gap between them and the ground

truth due to the non-reducible estimation errors. Depending

on the degree of nonlinearity of the system models and the

setting up of the used system parameters, this gap may even

lead to the collapse (divergence) of the EKF. So inspired by

this, unlike the abundant existing developments to nonlinear

filtering, our idea is to still use the TSE based framework of

EKF but to find better expansion points. It can be clearly seen

that the closer the expansion points are to the ground truth,

the better they are.

IV. MULTI-MODEL EXTENDED KALMAN FILTER

In the EKF, the filter-calculated “best” estimates are selected

as the expansion points first, and then the Kalman filter for

linear case is applied. This follows a decision then estimation

procedure. But why are the filter-calculated “best” estimates

selected as the expansion points? This is because they are

thoughts as the closest to the ground truth in the state space.

For example, the MMSE-optimal or LMMSE-optimal criteria

defines different closeness measures. From the point of view

of decision procedure, this is a hard decision since only one

specific point is selected from the state space. Inspired by

the work of maneuvering target tracking, where soft decision

based multi-model estimation is now the mainstream because

of its prevailing advantage, soft decision should also be pre-

ferred for the selection of expansion points for the TSE used in

the EKF. In soft decision, the decision is the pmf of all possible

decision choices if there are countably many of them. That is,

the decision is the possibility of each choice. Whereas in hard

decision, the decision is just a single point of the set of all

possible decision choices. For example, we can simply pick up

the one with the highest probability. From probability theory,

92



we know that although the probability of an event may be very

small, this does not mean that it has no chance to happen. So

by also considering the other choices with relatively lower

probabilities, soft decision seems to be able to help alleviate

the decision errors associated with expansion point across time

to certain extent.

First, suppose that p(xk−1|zk−1) can be approximated by a

discrete pmf

P{xk−1 = x̂i
k−1|zk−1} = ŵi

k−1, i = 1, · · · , N

where
∑N

i=1
ŵi

k−1 = 1, ŵi
k−1 ≥ 0

Then by choosing these N points as the expansion points of

the first-order TSEs of the state transition model, we will have

N linearized state transition models as

M̂i
k−1 : xk = fk−1(x̂

i
k−1) + F i

k−1(xk−1 − x̂i
k−1) + wk−1

where

P{M̂i
k−1|zk−1} = ŵi

k−1

F i
k−1 =

∂fk−1(xk−1)

∂xk−1

∣

∣

∣

∣

xk−1=x̂i
k−1

Furthermore, suppose that p(xk|zk−1) can also be approx-

imated by a discrete pmf

P{xk = x̄j
k|zk−1} = w̄j

k, j = 1, · · · ,M

where
∑M

j=1
w̄j

k = 1, w̄j
k ≥ 0

Then by choosing these M points as the expansion points of

the first-order TSEs of the measurement equation, we will have

M linearized measurement models as

M̄j
k : zk = hk(x̄

j
k) +Hj

k(xk − x̄j
k) + vk

where

P{M̄j
k|zk−1} = w̄j

k, Hj
k =

∂hk(xk)

∂xk

∣

∣

∣

∣

xk=x̄j

k

By choosing {M̂i
k−1}Ni=1 as the model set for state tran-

sition from k − 1 to k and {M̄j}Mj=1 as the model set for

measurement model at k, it can be clearly seen that the original

nonlinear filtering problem is now changed into a multi-model

estimation problem [12].

Remark 2: Two points should be noted about the new multi-

model estimation problem induced from nonlinear filtering.

First, there is uncertainty not just in the state transition model,

but also in the measurement model. Second, the new multi-

model estimation problem is in essence a variable structure

multi-model filtering problem [13] since the model set is

changing over time.

One cycle of the multi-model extension of the extended

Kalman filter can be summarized as follows.

Time update:

Time update purely conditioned on M̂i
k−1 (i = 1, · · · , N ):

x̂i
k|k−1 ≈ fk−1(x̂

i
k−1) + F i

k−1(x̂k−1|k−1 − x̂i
k−1) (3)

xk − x̂i
k|k−1 ≈ F i

k−1(xk−1 − x̂k−1|k−1)

P i
k|k−1 ≈ F i

k−1Pk−1|k−1(F
i
k−1)

′ +Qk−1

Remark 3: Note that time update (3) purely conditioned on

M̂i
k−1 is different from the time update (1) in the classical

EKF in that an additional term F i
k−1(x̂k−1|k−1 − x̂i

k−1) is

added. This extra term can be thought as a correction term to

the original prediction step of the EKF.

The combined multi-model prediction is then:

x̂k|k−1 =
∑N

i=1
ŵi

k−1x̂
i
k|k−1

Pk|k−1 =
∑N

i=1
ŵi

k−1P
i
k|k−1

+
∑N

i=1
ŵi

k−1(x̂
i
k|k−1 − x̂k|k−1)(x̂

i
k|k−1 − x̂k|k−1)

′

Measurement update:

Measurement update purely conditioned on M̄j
k (j =

1, · · · ,M ):

ẑjk|k−1 ≈ hk(x̄
j
k) +Hj

k(x̂k|k−1 − x̄j
k) (4)

z̃jk|k−1 = zk − ẑjk|k−1 ≈ Hj
k(xk − x̂k|k−1) + vk

Sj
k|k−1 ≈ Hj

kPk|k−1(H
j
k)

′ +Rk

Kj
k = cov(x̃k|k−1, z̃

j
k|k−1) ≈ Pk|k−1(H

j
k)

′(Sj
k|k−1)

−1

x̂j
k|k ≈ x̂k|k−1 +Kj

k(zk − ẑjk|k−1)

x̃j
k|k ≈ xk − x̂k|k−1 −Kj

k(zk − ẑjk|k−1)

= (I −Kj
kH

j
k)(xk − x̂k|k−1)−Kj

kvk

P j
k|k ≈ (I −Kj

kH
j
k)Pk|k−1(I −Kj

kH
j
k)

′ +Kj
kRk(K

j
k)

′

Remark 4: Similarly note that measurement prediction (4)

purely conditioned on M̄j
k is also different from the measure-

ment prediction (2) in the classical EKF in that an additional

term Hj
k(x̂k|k−1 − x̄j

k) is added. This extra term can also

be thought as a correction term to the original measurement

prediction step of the EKF.

According to the Bayes’ rule, the posterior model probabil-

ity can be obtained as

w̆j
k = P{M̄j|zk}

=
p(zk|M̄j)w̄

j
k

∑M
l=1 p(zk|M̄l)w̄l

k

where

p(zk|M̄j) ≈ N (z̃jk|k−1; 0, S
j
k|k−1)

Finally the combined multi-model update is then:

x̂k|k =
∑M

j=1
w̆j

kx̂
j
k|k

Pk|k−1 =
∑M

j=1
w̆j

kP
j
k|k

+
∑M

j=1
w̆j

k(x̂
j
k|k − x̂k|k)(x̂

j
k|k − x̂k|k−1)

′
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Prediction Update

|
�
k k
x 1| 1

�
k k
x

+ +

time

dd

k 1k +

          Local update          Local prediction          Global update

|Pk k 1| 1P
k k+ +

Figure 1. Once cycle of multi-model extended Kalman filter for N = 3

Remark 5: In the above, the M measurement models

(expansion points) can be simply generated as follows. From

each local predicted density with the first two moments x̂i
k|k−1

and P i
k|k−1 (i = 1, · · · , N ), we can again generate N mass

points similarly and use them in the first-order TSEs of the

measurement model. Then altogether we will have M = N2

measurement models. One cycle of this procedure is illustrated

in Fig. 1.

V. MODEL-SET DESIGN

In the above, to ease the discussion of the framework of the

multi-model Extended Kalman filter, we just assume that both

model sets {M̂i
k−1}Ni=1 and {M̄j}Nj=1 are given. However,

how can we have them for nonlinear filtering problems. This

is a model-set design problem and will be discussed next.

Model-set design problem is a critical component of multi-

model estimation problem. However, most existing work focus

on multi-model filtering algorithm development with known

model-set. The existing work on systematic model-set design

is very scarce. By introducing the concept of random model,

three classes of general methods for optimal design of model

sets—by minimizing distribution mismatch, minimizing modal

distance, and moment matching, respectively—are proposed in

[14]. All of them can be applied to our multi-model extended

Kalman filter. For illustrative purpose, only the first class will

be considered—by minimizing distribution mismatch—in this

paper.

To apply the model-set design method using the concept of

random model, we need to determine the distribution of the

random model first. For nonlinear state estimation, given the

updated estimate x̂k−1|k−1 and Pk−1|k−1 at k − 1, similar to

[7], we can simply assume that the posterior pdf is Gaussian,

p(xk−1|zk−1) ≈ N (xk−1; x̂k−1|k−1, Pk−1|k−1)

Then by model-set design, it is simply meant to find a

discrete pmf to approximate this Gaussian distribution. That

is, in essence, the design problem is just how to approxi-

mate a continuous distribution by a discrete distribution. Cer-

tainly we want the approximation error—the mismatch (dif-

ference) between the continuous distribution and the discrete

distribution—to be as small as possible. So one natural idea is

to set up an optimization objective function based on the error

between the two distribution functions and then minimize it.

In the following, we will provide some suggestions on how to

achieve this approximation.

For the ease of discussion below, we assume that the

quantity of interest is a scalar, the cdf (cumulative distribution

function) of the scalar-valued continuous random variable is

Fc(x) and the cdf of a candidate discrete random variable is

Fd(x).
In [14], it is found that for a predetermined tolerance

parameter ǫ, which puts a constraint on the candidate cdf

Fd(x)

|Fc(x)− Fd(x)| < ǫ, ∀x

the minimum number of mass points needed for Fd(x) is

simply N = ⌈1/2ǫ⌉ = smallest integer not smaller than 1/2ǫ.
If the error of approximating Fc(x) by Fd(x) is measured by

the Kolmogorov-Smirnov distance between two distributions

d(Fc(x), Fd(x)) = sup
x∈R

|Fc(x) − Fd(x)|

i.e., using this distance as the objective function for mini-

mization, the approximation of a continuous distribution by a

discrete distribution will be changed into the following min-

max optimization problem

F ∗
d (x) = arg inf

Fd(x)
sup
x∈R

|Fc(x) − Fd(x)|

under the constraint that the number of mass point of Fd(x)
should be N . It seems that this is a functional optimization

problem with respect to Fd(x), which is not easy in general.

Due to the fact that a discrete distribution is characterized by

the number of mass points, the locations of the mass points

and the probability at each mass point, however, the functional

optimization problem over Fd(x) can be changed into a much

easier parameter optimization problem.

The optimal pmf for the above min-max problem is

P{x = x∗
i } =

1

N
, i = 1, · · · , N

x∗
i = F−1

c (
i− 1/2

N
)

where F−1
c (·) is the inverse function of Fc(·).

In [15], [16], the number of mass points N of Fd(x) also

needs to be predetermined. Unlike the Kolmogorov-Smirnov

distance used above, the difference between Fc(x) and Fd(x)
is measured by the weighted Cramér-von Mises distance

d(Fc(x), Fd(x)) =

∫ +∞

−∞

g(x)(Fc(x) − Fd(x))
2dx

where g(x) is a nonnegative weighting function and it is

selected in such a way that only some portions, problem

dependent, of Fc(x) are approximated with high accuracy.

Correspondingly, the optimization problem is

F ∗
d (x) = arg min

Fd(x)

∫ +∞

−∞

g(x)(Fc(x) − Fd(x))
2dx
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under the constraint that the number of mass point of Fd(x)
should be N .

When the N mass points are equally distributed and g(x) =
1, it is proved that the locations of the mass points are

x∗
i = F−1

c (
i − 1/2

N
), i = 1, · · · , N

which are exactly the same as the locations of the mass points

when the Kolmogorov-Smirnov distance is used.

For a scalar-valued continuous random variable x following

an arbitrary distribution, we can use the above criteria to

approximate it and find the corresponding pmf. For the vector

case, unfortunately, we do not have such a nice approximation

as in the above. However, we can still assume that x follows

a Gaussian distribution with certain mean x̄ and covariance

matrix Cx. The extension of the above result for scalar case

to multivariate Gaussian case is discussed next.

Given an n-dimensional Gaussian distribution p(x) =
N (x; x̄, Cx), due to the symmetry and positive-definiteness

of Cx, it follows from the singular value decomposition that

Cx = UΣU ′

where U is a unitary matrix, Σ = diag{σ1, · · · , σn} and σi’s,

i = 1, · · · , n, are the singular values of Cx. Also, if y ∼
N (y; 0n×1, In×n), then we have

UΣ1/2y + x̄ ∼ N (x̄, Cx)

So a simple way to approximate N (x; x̄, Cx) by a discrete

pmf can be summarized by the following three steps.

Step 1: Generate n identical scalar pmfs, each of which uses

the same N mass points to approximate a standard normal

distribution using the criteria above.

Step 2: Combine the mass points of all n pmfs to have a

discrete approximation to N (0n×1, In×n) by Nn mass points,

each of which happens with equal probability 1/Nn.

Step 3: Transform all the Nn mass points from the last step

through a linear transformation L(yi) = UΣ1/2yi + x̄ one by

one to have a discrete approximation to N (x̄, Cx).
In the above extension to multivariate case, the key is to

approximate a single standard normal distribution which has

the following cdf

Fc(x) =

∫ x

−∞

1√
2π

e−
t2

2 dt

Unfortunately we do not have an analytical form for its inverse

function F−1
c (x). To save computational load, we can work

out some look-up tables for different numbers of mass points

in advance. For example, the look-up tables for N = 3, 5, 7
are as follows.

Table I
MASS POINTS OF STANDARD NORMAL DISTRIBUTION FOR N = 3

−0.9674 0 0.9674

Table II
MASS POINTS OF STANDARD NORMAL DISTRIBUTION FOR N = 5

−1.2816 −0.5244 0 0.5244 1.2816

Table III
MASS POINTS OF STANDARD NORMAL DISTRIBUTION FOR N = 7

−1.4652 −0.7916 −0.3661 0 0.3661 0.7916 1.4652

The comparison between the cdf of standard normal dis-

tribution and its approximation using different numbers of

mass points is shown in Fig. 2. It can be clearly seen that

the use of different numbers of mass points does provide

reasonable approximations to the cdf of standard normal

distribution. Also, the more mass points are used, the better

the approximation accuracy is.

VI. ILLUSTRATIVE EXAMPLES

To illustrate the effectiveness and efficiency of the proposed

multi-model extension of the classical EKF, consider the

following nonlinear dynamic system

xk =
1

2
xk−1 +

25xk−1

1 + x2
k−1

+ 8 cos [1.2 (k − 1)] + wk−1

which is observed as

zk =
1

20
x2
k + vk

as an example. It is known that

x0 ∼ N (0.1, 2) , wk ∼ N (0, 1) , vk ∼ N (0, 1)

This scalar nonlinear system works as a benchmark testing

example in many existing work on nonlinear filtering [11],

[17].

Next we compare the filtering performance of the classical

EKF, the UF (unscented filtering), the PF (Bootstrap particle

filter with 100 particles), the MMEKF (Multi-model Extended

Kalman filter), and the iEKF (the classical EKF with expansion
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Figure 2. Comparision between cdf of standard normal distribution and its
approximations
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Figure 4. RMS error for N = 5

point chosen to be the ground truth). Since the expansion point

of the TSE of the iEKF is the ground truth, it is not realizable

in reality. However, it can still work as a lower bound for TSE

based Extended Kalman filters for performance comparison

purpose due to its use of the ideal expansion point.

The Monte Carlo simulation results over 200 runs are shown

in Figs. 3, 4 and 5 for the cases N = 3, 5, 7, respectively.

It can be clearly seen that the classical EKF performs the

worst among all filters. Also, its RMS error curves have the
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Figure 5. RMS error for N = 7

biggest jumps among all filters. So it is really necessary to

have it replaced by some better performed nonlinear filters for

the system considered. However, the iEKF performs the best

among all filters. It even beats the PF and can definitely works

as a lower bound for the RMS error. Also its error curves

fluctuate the least among all filters, which is strongly desired.

The best performance of the iEKF and its least fluctuations

further indicates that the TSE based framework of the EKF

is still quite promising to lead to better performed nonlinear

filters if the expansion points are well selected. And what

makes the EKF perform the worst should be mainly coming

from the misspecification of the expansion point.

Just from Fig. 3, it can be seen that the performance of

the classical EKF can be significantly improved by simply

considering two more expansion points around the filter-

calculated estimate. So the multi-model extension of the EKF

is really attractive. For the above scalar nonlinear system

considered, the number of sigma points used by the UF is 3.

When the MMEKF also uses 3 mass points, its performance

is just a little poorer than that of the UF. However, as can be

seen from Fig. 4, when the MMEKF uses 5 mass points, it is

already very hard to tell which one between the MMEKF and

the UF performs better. If more mass points (7 mass points) are

used, the MMEKF can beat the UF very easily as can be seen

from Fig. 5. It may be unfair to say so because the MMEKF

used more mass points. Nevertheless the way to increase the

mass points used by the MMEKF is very systematic and easy.

Whereas to increase the number of sigma points used by the

UF is very hard and needs ingenious design skill usually.

VII. CONCLUSIONS

The malfunction of the EKF is mainly because of the

misspecification of the expansion point of the TSE but not

the TSE itself. Motivated by this, it is demonstrated in this

paper that the TSE based framework of the EKF is still quite

promising in leading to better performed nonlinear filters. This

is achieved through a multi-model extension to the EKF. In the

new extension, multiple probabilistically weighted expansion

points are used instead of just the filtered calculated “best”

estimate. By taking first-order TSEs at multiple expansion

points, multiple linearized dynamic and measurement mod-

els are obtained. The original nonlinear filtering problem

is then naturally changed into a variable structure multi-

model estimation problem. Suggestions on how to design the

probabilistically weighted discrete points to approximate the

whole state space is provided. Numerical examples show that

performance of the proposed multi-model extension to the

EKF is quite promising when compared with several existing

competitive nonlinear filters.
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