
Improvements in the Implementation of

Log-Homotopy Based Particle Flow Filters

Muhammad Altamash Khan, Martin Ulmke
Sensor Data and Information Fusion Department

FKIE Fraunhofer, Wachtberg, Germany

Email: altamash.khan@fkie.fraunhofer.de , martin.ulmke@fkie.fraunhofer.de

Abstract—State estimation of a non-linear system perturbed
by non Gaussian noise is a challenging task. Typical solutions like
EKF/UKF could fail while Monte Carlo methods, even though
more accurate, are computationally expensive. Recently proposed
log homotopy based particle flow filter, also known as Daum-
Huang filter (DHF) provides an alternative way of non-linear
state estimation. There have been a number of DHFs derived,
based on solutions of the homotopy flow equation. The perfor-
mance of these new filters depends a lot on the implementation
methodology. In this paper, we highlight the key factors affecting
the DHF performance and investigate them individually. We then
make recommendations based on our results. It is shown that a
properly designed DHF can outperform a basic particle filter,
with less execution time.

Keywords—Particle flow filters , Log-homotopy , DHF , Multiple
target tracking, Coupled model , Non-Gaussian noise, Stiff ODE,
Shrinkage estimators, Redrawing, Kernel density estimation.

I. INTRODUCTION

The Bayesian estimation (BE) framework offers an intuitive
way for the estimation of the hidden states of a dynamical
system based on the observation data. The Bayesian estimation
is carried out recursively, typically consisting of a prediction
and a correction step. Finite dimensional analytical solutions
to the BE problem are available only in few cases, mainly
when the system model is linear Gaussian (Kalman filter) or a
finite state Hidden Markov model (HMM) Traditional methods
for non-linear state estimation include Extended (EKF) and
Unscented Kalman filter (UKF). However these methods are
usually sub-optimal and their performance degrades with the
increase in the non-linearity, and also when the transition
and measurement densities are non-Gaussian (e.g. multimodal,
exponential).

Particle filters, also known as sequential Monte Carlo
(SMC) methods, provide an alternative way to the state es-
timation. The main idea is to represent the posterior density
by a weighted set of random samples (particles), which are
then used to form the point estimates e.g. mean and variance
[1]. Several version of particle filters have been proposed
in the literature e.g. Sampling importance re-sampling (SIR)
filter [2] also known as bootstrap particle filter, Auxiliary
sampling importance resampling (ASIR) filter [3] , regularized
particle filter (RPF) [4] etc. While particle filters can effectively
deal with the non-linearities and non-gaussian noises, they
suffer from the so called weight degeneracy and curse of
dimensionality. A different approach to non-linear filtering has
been suggested by Daum and Huang , which is based on the

gradual inclusion of the measurements. The key idea is to
model the transition of particles from the prior to the posterior
density as a physical flow under the influence of an external
force (measurements). Stochastic differential equations (SDE)
define the flow of particles in pseudo-time, while the Foker-
Plack equation (FPE) describes the density evolution. A flow
vector is obtained by solving the FPE under different assump-
tions, which is then integrated numerically yielding updated
particles states. The new filter is termed as homotopy based
particle flow filter or simply Daum-Huang filter (DHF) after
the developers. Different flow solutions have been derived,
including the incompressible flow [5], zero diffusion exact flow
[6], and non zero diffusion flow [7].

DHF implementations have been mentioned in several
sources. While conceptually being quite intuitive, DHF per-
formance suffers in practice due to several assumptions, made
both in the theory and the implementation. In this paper we
identify key factors/steps affecting the performance of the
DHF, and suggest possible improvements in their implemen-
tation. We consider a non-linear and non-Gaussian estimation
problem and show that by carefully choosing the methods for
those key steps, DHF performance can be substantially im-
proved over the more traditional implementations. We present
a description of homotopy based particle flow in section II. In
section III we describe our main contributions in detail. The
specific dynamical model used in the study is outlined in the
section IV. Simulation methodology and results are described
in section V, which is followed by the discussion in section
VI. Finally the conclusion is given in section VII.

II. LOG HOMOTOPY BASED PARTICLE FLOW FILTERS

Let xk ∈ R
d denote the state vector and zk ∈ R

m denote
the measurement vector at time k. Also let Zk denote the set
of measurements up to time k including zk, Zk = {z1, z2 , ...
, zk }. The state space model can be expressed in the terms
of conditional probabilities,

xk+1 ∼ p(xk+1|xk) (1)

zk+1 ∼ p(zk+1|xk+1) (2)

p(xk+1|xk) and p(zk+1|xk+1) are referred to as the transition
and the measurement(likelihood) densities. Assuming additive
process and measurement noises wk and vk we can write

p(xk+1|xk) = pwk
(xk+1 − φk(xk)) (3)

p(zk+1|xk+1) = pvk(zk+1 − ψk(xk+1)) (4)

18th International Conference on Information Fusion
Washington, DC - July 6-9, 2015

978-0-9964527-1-7©2015 ISIF 74

where φk is termed as the process / dynamical model and
ψk as the measurement model. According to the Bayes the-
orem the prior density p(xk+1|Zk) and the posterior density
p(xk+1|Zk+1) are recursively defined as,

p(xk+1|Zk) =

∫

p(xk+1|xk)p(xk|Zk)dxk (5)

p(xk+1|Zk+1) =
p(zk+1|xk+1)p(xk+1|Zk)

p(zk+1|Zk)
(6)

where p(xk|Zk) is posterior density at time k. The conditional
density p(zk+1|Zk) appears as a normalization constant in the
measurement update equation (6). The DHF as described in
[5]-[7], shares the importance sampling step with the particle
filter but it specifically uses the prior distribution of the
state vector p(xk+1|xk) as the importance density. The main
difference lies in how the measurements are incorporated to
derive the posterior density. The idea here is to model the
motion of particles from the prior to the posterior densities,
in a way analogous to the flow of physical particles. A
log-homotopy function log p(xk, λ) is defined through the
homotopy parameter λ,

log p(xk+1, λ) = log g(xk+1)+λ log h(xk+1)−logK(λ). (7)

where g(xk+1) represents the prior p(xk+1|Zk), h(xk+1) the
likelihood p(zk+1|xk+1) and λ the artificial/synthetic time
varying from 0 to 1. K(λ) is the normalization constant for the
posterior density independent of xk+1. λ = 0 sets p(xk+1, λ)
equal to the prior density while with λ = 1 the transformation
is completed to the normalized posterior density. From now
onwards, we drop the time index k for the sake of convenience
and ignore the normalization constant K(λ). It is supposed that
the flow of particle obeys the Ito SDE,

dx = f(x, λ)dλ+ σ(x, λ)dw (8)

where f(x, λ) is the flow vector, w is the M-dimensional
Wiener process with diffusion term σ(x, λ). State x is assumed
to be an implicit function of λ. For a flow characterized as in
(8), the evolution of the density p(x, λ) w.r.t the parameter
λ is given by the Fokker-Planck equation (also known as
Kolmogorov forward equation),

∂p(x, λ)

∂λ
= −

d
∑

i=1

∂

∂xi

[fi(x, λ)p(x, λ)]

+
1

2

d
∑

i=1

d
∑

j=1

∂2

∂xi∂xj

[Qi,j(x, λ)p(x, λ)] (9)

where Qi,j(x, λ) is the diffusion matrix. Different flow so-
lutions have been obtained by solving equation (9) under
different assumptions. Here we discuss the latest of them,
which is termed as the non zero diffusion flow. The derivation
of this flow is given in [7]. Here we only show the end result,

f(x, λ) =
[∂2

∂x2
log p(x, λ)

]−1[∂

∂x
log h(x)

]T
(10)

with the constraint

∂

∂x
[
∂

∂x
· f(x, λ)] +

[∂

∂x
log p(x, λ)

][∂

∂x
f(x, λ)

]T
=

∂

∂x

[

1

2p(x, λ)

∂

∂x
· (Q(x, λ) ·

∂

∂x
p(x, λ))

]

(11)

The hessian of log p(x, λ) can be approximated as

∂2

∂x2
log p(x, λ) = ∂2

∂x2
log g(x) + λ ∂2

∂x2
log h(x) (12)

≈ −P−1 + λ ∂2

∂x2
log h(x) (13)

where P−1 is the prior covariance matrix estimate. The hessian

of the log-likelihood, ∂2

∂x2
log h(x), can be calculated analyti-

cally in most cases.

III. MAIN CONTRIBUTION

Numerical results for the DHF have been presented in [8].
DHF based on the incompressible and exact flows have been
implemented by Choi. et.al. in [9] for non-linear scalar and
linear vector system models. Exact flow DHF implementations
for multi-target tracking have been reported in [10]. Also in
[11], joint probabilistic data association (JPDA) and maximum
aposteriori penalty function (MAP-PF) algorithms based on
the exact flow DHF have been derived. While particle flow
filters are theoretically quite elegant, their performance suffer
from approximations made, both in theory and in the practical
implementation. This includes approximations made while
deriving the flow, estimation of the prior density and the use
of numerical techniques. These lead to the introduction of bias
and loss of asymptotic consistency [12].

There could be several ways in which a DHF can be
implemented. Below, we outline the method described in [10].

Initialize DHF: Generate initial set of particles;
Initialize EKF/UKF: Initial mean and covariance;
Pseudo-time grid discretization;
for Loop over the time do

Propagate particles using the dynamic model;
Time update for EKF/UKF;
Prior covariance matrix estimate from EKF/UKF;
for Loop over the pseudo-time do

for Loop over individual particles do
Integration of the flow equation;

end
Measurement Update for EKF/UKF ;
Mean state evaluation from particles;
Redraw particles (Optional);

end
end

Algorithm 1: Generic implementation of DHF

Particles are generated by sampling the transition density.
An EKF/UKF is run in parallel to the main algorithm. This
is done in order to approximate the prior covariance matrix.
Next the flow equation is solved in the pseudo-time for all
particles. The flow equation uses the prior covariance estimate
from the parallel running EKF/UKF. Once done, the mean
state vector is estimated and the measurement update is carried
out for EKF/UKF. This process in repeated till the end of the
simulation time.

The steps colored in red are crucial factors in the perfor-
mance of the DHF. First comes the pseudo-time λ discretiza-
tion strategy, together with the numerical integration method.
As the DHF flow is described by an ordinary differential

75

equation (ODE), a suitable discretization is essential to capture
the flow dynamics. Then the flow equation is integrated w.r.t.
λ. While the exact implementational details for the references
([7], [9],[11]) are not known, authors in [10] have used single
step Euler integration as mentioned in the pseudo-code. The
method is based on first order Taylor series expansion. It is
simple to implement and is fairly quick. But care has to be
taken as the flow ODE can exhibit stiffness. In that case
a straight forward λ discretization together with single step
Euler integration might not work. Secondly, the non zero
diffusion flow requires an estimate of the prior covariance
matrix. While prior covariance estimate from parallel running
EKF/UKF can be used as an approximation, this makes the
DHF accuracy dependant on EKF/UKF. On the other hand, a
sample covariance estimate can often be ill-conditioned. The
question then becomes, is there a better method to estimate the
prior covariance matrix. Finally, the re-generation of a new set
of particles is an important step. Unlike a standard particle
filter, the re-sampling/re-drawing step is not mandatory in the
DHF but optional. Instead, it is descibed that the homotopy
flow moves the particles to their correct location in the state
space. But due to approximations, the flow might not be
accurate. Hence the effect of particle re-generation is worth
investigating. In the current work we look for improvements
in the DHF performance by considering changes in the existing
implementation architecture, as mentioned in Algorithm 1.
We study the four factors mentioned in the last section,
individually.

A. Pseudo-time discretization

While comparing the two flows, it was shown in [13] that
the non zero diffusion flow is considerably stiff as compared
to the exact flow, where authors used 39 exponentially spaced
λ points for solving the ODEs. In this paper we consider both
uniform and non-uniform grid discretization. The idea is to
analyze the effect of a particular numerical integration scheme
and grid discretization strategy on the filter performance, in
terms of the estimation error and the processing time.

B. ODE numerical solution

The homotopy flow is defined by a vector ordinary dif-
ferential equation (ODE). In the current work, we seek for
the numerical solution of the ODE. Broadly speaking, ODEs
can be catagorized as being stiff and non-stiff. While there
is no precise definition of the stiffness, in the literature two
criteria are generally mentioned for describing a stiff ODE.
First, the condition number of the jacobian matrix J(x, λ) =
∂f(x,λ)

∂x
of a stiff ODE is quite large. As a consequence,

multiple timescales exist in the ODE. Time scales, often
referred as modes, are defined by the inverse of the absolute
of the eigenvalues. Secondly, in the Lipschitz’s inequality
||f(x2, λ2) − f(x1, λ1)|| ≤ L||λ2 − λ1||, the Lipschitz’s
constant L is typically very high for a stiff ODE. Non-zero
diffusion ODE can be characterized as stiff according to the
both criteria. Therefore, care has to be taken while chosing the
numerical integration scheme for solving the flow ODE.

The standard Euler’s method is used for solving the flow
ODE in earlier works. It is a first order method with the
truncation error in the order of O(h2). In this paper, we
intend to compare the performance of some other numerical

integration (NI) schemes for solving stiff ODEs alongside the
Euler’s method. There are several choices available. Below,
we mention some of the common NI methods for solving stiff
ODEs.

1) Forth order Runge-Kutta method: Forth order Runge-
Kutta method (RK4) is our second integration method. The
RK4 method is a fourth-order method, which implies that the
local truncation error is on the order of O(h5) ,while the total
accumulated error is of order O(h4).

2) Rosenbrock method: Rosenbrock methods are fam-
ily of multistep procedures to solve stiff ODEs. Formulas
use the Jacobian matrix into the integration formula. Like
the Runge-Kutta methods, Rosenbrock methods successively
form intermediate results. Therefore, they are also called
Runge–Kutta–Rosenbrock methods.

3) Gear’s method: The Gear’s method belongs to the
class of methods known as backward differentiation formulae
(BDF). It is an implicit integration method and uses the first
and higher order derivatives. It is a predictor-corrector type
scheme.

C. Prior covariance shrinkage estimation

The evaluation of the flow equation (10) require the avail-
ability of the prior covariance estimate. This can be derived in
several ways. The simplest way is to estimate the covariance
matrix using the prior particles. This is referred to as the
sample covariance estimate S. S is an unbiased estimator of
the true prior covariance P , and is the maximum likelihood
estimate if the data is Gaussian distributed. But in the presence
of non-linear models, the Gaussian assumption does not valid.
Also S could progressively get ill-conditioned. i.e. the spread
of the eigenvalues gets larger with the passage of time. This
is especially the case, when the d

Np
ratio is non-negligable,

where d is the state vector dimension and Np is the number of
particles. As a consequence, the matrix inversion could lead
to stability issues. An alternative method suggested by authors
in [14] is to run an EKF/UKF in parallel to DHF, and to use
the prior covariance matrix generated by those filters. We refer
to such matrix as PXKF , where XKF could be Extended or
Unscented version of the KF. While this method is better than
using the raw data based covariance estimate, it ties the DHF
estimation accuracy to that of the EKF/UKF. PXKF could also
exhibits a wide spread of the eigenvalues.

Therefore, we look for some other method of covariance
matrix estimation. That method should have two properties.
First, the resulting matrix should always be positive definite
(PD) and second, the matrix should be well-conditioned [15].
Shrinkage estimation is an alternative method, used in the mul-
tivariate statistics literature for the estimation of the covariance
matrix. The use of such methods date back to work of Stein
[16]. The main idea is to merge the raw estimate (S) which
is unbiased but normally with high variance, together with a
more structured but typically a biased target (B) through a
scale factor, to get the combined estimate (P∗). The objective
is to reduce the estimation error, typically in mean squared
sense (MSE), by achieving an optimal trade off between the
biased (B) and the unbiased (S) estimators. The scale factor is
also called shrinkage intensity ρ as it shrinks the eigenvalues
of S optimally towards the mean of eigenvalues of the true

76

covariance matrix P . The resulting covariance matrix (P∗)
will be biased, but will improve on the two aforementioned
properties, and is hoped to lower the estimation error. There
are several shrinkage estimators mentioned in the literature,
with different target covariance matrices. In the current work,
we describe some of the more established shrinkage estimators.

1) Shrinkage towards the Identity matrix: In subsections
III-C1 to III-C3, shrinkage estimator is defined by convex
combination of the matrices B and S. The objective is to find
an optimal shrinkage intensity that minimizes the the MSE,

min
ρ

E[||P∗ − P ||
2] (14)

where P∗ = ρB + (1 − ρ)S. Shrinkage towards the Identity
matrix is described in [17]. The two main objectives defined
are, to get an asymptotically consistent estimator that is more
accurate than the sample covariance matrix S, and is well-
conditioned. No prior structure is assumed about the target
matrix B, as it could lead to an increased biasness. Instead
a simple matrix with same covariance terms and zero cross-
variances (scaled Identity) is chosen as the target. Hence,
B = mnI with mn = tr(S)/d. Also the shrinkage intensity

is defined as ρ = α̂1

α̂2
where α̂2 = ||S − mnI||

2 and

α̂1 = α̂2 − min(α̂2,
1
n2

Np
∑

i=1

[||Xi
n(X

i
n)

T − S||2]) ||.|| is the

Frobenius norm and Xi
n is the ith particle. One main advantage

of PLW0 is that it does not assume any particular distribution
for the data and therefore is distribution-free.

2) Shrinkage towards the constant correlation matrix:
This estimator is derived in [18], in the context of portfolio
optimization. The target matrix is chosen according to the
constant correlation model. It means that pairwise correlations
are identical, which is given by the average of all the sample
correlations. We denote this estimator by PLW1. The target
matrix B is given by

B =

{

Sii : i = j
r̄
√

SiiSjj : i 6= j

where r̄ is the average sample correlation. The shrinkage
intensity is defined as ρ = max{0,min{1, κ

d
}}, with the

κ given as , κ = π̂− ˆ̺
γ̂

. π̂ denotes the sum of asymptotic

variances of the entries of the sample covariance matrix S,
while ˆ̺ denotes the sum of asymptotic covariances of the
entries of the shrinkage target B with the entries of the sample
covariance matrix. γ̂ gives a measure of the misspecification
of the shrinkage target. Formulas for π̂, ˆ̺ and γ̂ are bit long
and we do not show them here. Interested readers may consult
the source article.

3) Shrinkage towards the perfect postive correlation ma-
trix: Authors in [19] suggest single-factor matrix as the
shrinkage target. The paper is concerned with estimating the
structure of the risk in the stock market and the modelling
of the stock returns. The fact that stock returns are positively
correlated to each other, is exploited. The shrinkage target is
given by,

Bij =

{

Sii : i = j
√

SiiSjj : i 6= j

The resulting linear estimator is denoted as PLW2. The shrink-
age intensity has the same form as in for PLW1, but with
slighty different formula for ˆ̺.

4) Emprical Bayesian: In [20], an estimator for multi-
variate Gaussian data is derived. It is given by the linear
combination of the sample covariance matrix S and scaled
identity matrix. The scaling factor is estimated from the data.
We denote this estimator by PEB and it is given by

PEB =
Npd− 2Np − 2

N2
pd

[det(S)]
1
d I +

Np

Np + 1
S (15)

5) Stein Haff: This estimator is described in [21]. The
general form of the estimtor is V (S)Φ(l(S))V (S)T , where
V (S) matrix contains the eigenvectors of the sample covari-
ance matrix S while Φ(l(S)) is a matrix that is a fucntion
of the eigenvalues l(S) of the S. The data is assumed to
be normally distributed. The Stein-Haff estimator denoted
by PSH , is contructed by leaving the eigenvectors of the S

unchanged while replacing the eigenvalues l by
˜̂
li = nli/

(

n−

p + 1 + 2li
Np
∑

j=1,j 6=i

1
li−lj

)

. Eigenvalues can get disordered by

the transformation and might become negative, which could
lead to the covariance estimate lossing its positve definiteness.
Therefore another algorithm called isotonic regression is used
in conjunction with the transformation [22].

6) Minimax: The final shrinkage estimator considered is
derived in [23]. Again Gaussian assumption is made. This
estimator is termed minimax because under certain loss func-
tion, it has the lowest worst case error [17]. Its structure is
similar to the PSH but sample eigen values are replaced by

l̃i = n
n+p−1−2i li. This estimator is denoted here by PMX .

Isotonizing regression is not applied in this case.

D. Re-generating the particles set

In the standard particle filter, new set of particles are
generated after the measurement inclusion step. This is done
in order to avoid the particle degeneracy. A measure of
the particle degeneracy is the effective number of particles
Neff .When Neff falls below a certain threshold, resampling
of the particles is carried out. Depending on the number of
particles, this can be computationally expensive. Homotopy
based particle flow filters try to avoid the particle degeneracy
by the gradual inclusion of the measurements. Unlike standard
particle filters, resampling is not a mandatory step in the DHF
according to [14], as it moves the particles to the correct region
of the state-space. However due to the inexactness of the ho-
motopy flow ODE, the particle state update itself is imperfect.
Hence the generation of a new particle set could potentially
help in relocating/confining the particles to the correct region.
Instead of the conventional resampling, an optional redrawing
of the particles is hinted out by the Daum and Huang in
their papers. We find a single source describing the particles
redrawing method. In [10], it is suggested to redraw a new set
of posterior particles by sampling a Gaussian distribution. The
mean of the distribution is estimated using particles, while the
filtered covariance matrix is provided by the EKF. However,
the effect of the redrawing on the performace of DHF is not yet
studied upto our knowledge. Therefore, our last contribution
is to define a particle redrawing strategy, and to study the
effect of different redrawing schemes on the performance of
DHF. We consider two redrawing schemes, first using a single
multivariate Gaussian distribution (MVG), and second using a

77

xik+1 = xik + ẋik∆t+
1

2
axk+1

∆t2

yik+1 = yik + ẏik∆t+
1

2
ayk+1

∆t2

ẋik+1 = ẋik +Πi
xk
∆t+ axk+1

∆t

ẏik+1 = ẏik +Πi
yk
∆t+ ayk+1

∆t

Π1
xk

=
1

N − 1

N
∑

i=2

(κ1
√

(x1k − x
i
k)

2 + (y1k − y
i
k)

2 + δ

)v2t
rt

cos(
vt
rt
k)

Π1
yk

= −
1

N − 1

N
∑

i=2

(κ1
√

(x1k − x
i
k)

2 + (y1k − y
i
k)

2 + δ

)v2t
rt

sin(
vt
rt
k)

Πi
xk

= κ2(x
1
k − x

i
k)− κ3ẋ

i
k

Πi
yk

= κ2(y
1
k − y

i
k)− κ3ẏ

i
k

(D1)

rik+1 =

√

(x
(i)
k+1)

2 + (y
(i)
k+1)

2 + virk+1

θik+1 = tan−1
(y

(i)
k+1

x
(i)
k+1

)

+ viθk+1
(D2)

p(zk+1|xk+1) = p(rk+1|xk+1)p(θk+1|xk+1)

=
1

(

2πβ2
)

N
2

|Rr|
1
2

exp
{

−
1

2

(

rk+1 − r̃k+1

)T
R−1

r

(

rk+1 − r̃k+1

)

}

N
∏

i=1

exp
{

−
1

β

(

θ
(i)
k+1 − tan−1(

y
(i)
k+1

x
(i)
k+1

)
)}

(D3)

r̃k+1 =
[

√

(x
(1)
k+1)

2 + (y
(1)
k+1)

2

√

(x
(2)
k+1)

2 + (y
(2)
k+1)

2 · · ·

√

(x
(N)
k+1)

2 + (y
(N)
k+1)

2
]T

Rr =

σ2
r σ2

rx
· · · σ2

rx

σ2
rx

σ2
r · · · σ2

rx
...

...
...

...

σ2
rx

σ2
rx
· · · σ2

r

Gaussian mixture model (GMM) that is estimated through the
kernel density estimation (KDE).

1) Redrawing from MVG: Our first technique is similar to
the one described in the pseudo-code in [10]. New particles
are generated from a multivariate gaussian distribution. The
mean of the distribution is estimated using the posterior
DHF particles while shrinkage estimation is used to get the
covariance matrix, as opposed to the [10] where posterior
estimate from EKF is used.

2) Redrawing from KDE-GMM: KDE is a non-paramteric
method to estimate the probability density of random variables.
In this paper we use the online KDE approach described in
Kristan et.al. [24], where two main contributions are made.
First, the KDE of the target distribution is constructed by
online clustering of the data points. Secondly, each new ob-
servation is treated as a distribution in the form of Dirac delta
functions, and the sample distribution is modelled by a mixture
of Gaussian and Dirac delta functions. Sample distribution is
continously refined and compressed for keeping the algorithm
complexity low.

The question, when to redraw a new particle set, is an
important one. While redrawing can be carried out at each
time step, it might not be very efficient. Instead it should be
carried out when the particle spread gets too large.

Tth = ã+ exp(−b̃τ);
Ψ(k) = trPprior(k)− trPpost(k);

if
Ψ(k)

Ψ(k−1) ≥ Tth then

Redraw;
τ = 0;

else
No redraw;
τ ← τ + 1 ;

end

Algorithm 2: Particle redrawing criterion

An indicator of the particle spread is the difference of the
traces of the prior and the posterior covariance matrices Ψ . The

idea is to observe the trend of the particle spread and redraw a

new set of particles when the ratio
Ψ(k)

Ψ(k−1) gets above a certain

redrawing threshold Tth, which is also time dependant. The
reason for having a time dependant threshold Tth is that, one
would like to wait for a certain time before a new redraw.
This is accomplished here by reducing the Tth exponentially
from the maximum value until the redrawing criteria is met.
At that time, the Tth is reset and the process continues. The

exponential decrease is controlled by the parameters ã and b̃,
and the redrawing time index τ . Redrawing is explained in the
Algorithm 2.

IV. MODEL DESCRIPTION

Here, we consider the scenario similar to the one described
in [13], namely the tracking of multiple targets in a 2D space
using range and bearing measurements. States of targets are
interdependant, therefore resulting in a non-linear coupled
dynamical model. Furthermore, target association is assumed
to be perfectly known and hence we do not use any data
association algorithm. The state vector for the target i at time

instant k is x
(i)
k = (x

(i)
k , y

(i)
k , ẋ

(i)
k , ẏ

(i)
k), where x

(i)
k and y

(i)
k

represent the position while ẋ
(i)
k and ẏ

(i)
k representing velocity

components along the x and y-axis respectively. The overall
state vector is formed by concatenating the individual target

state vectors xk = [x
(1)
k , x

(2)
k . . . x

(N)
k]. Also the measurement

vector for the target i is given by z
(i)
k = (r

(i)
k , θ

(i)
k), where r

(i)
k

is the range to the target while θ
(i)
k is the target bearing. The

overall measurement vector at time k is generated in a similar
way. The process model is described in equations (D1), where
axk+1

and ayk+1
∼ N (0, σ2

a), ∆t is the time discretization step
size and N is the total number of targets. The intuition behind
the model is to make the targets motion coupled to each other.
The target (i = 1) is pursued by all other targets (i > 1).
The changes in the speed and direction of the targets depend
on their relative distances to each other. κ1, κ2 and κ3 are
the coupling constants in the model. rt and vt are the turning
radius and velocity respectively and δ is a small offset. The
measurement model for the ith target is given by equations

78

(D2). Range measurement noises vrk+1
∼ N (0,Rr) are

mutually correlated but are independent w.r.t. the bearing mea-
surement noises vθk+1

. Bearing measurement noise elements

viθk+1
are exponentially distributed with the scale paramter

β, such that E[(viθk+1
)2] = β2 and E[viθk+1

vjθk+1
] = 0. Rr

represent the covariance matrix of vrk+1
with σ2

r = E[(virk+1
)2]

and σ2
rx

= E[virk+1
vjrk+1

]. σ2
rx

is assumed to be same for
any two targets. The likelihood function can be written as in
equation (D3). A more detailed description of the model can
be found in [13].

V. RESULTS

We simulate two targets (N =2) in our analysis. ∆t is set to
1, σ2

a to 0.5 ms−2, σ2
r is set to 2000m2, σ2

rx
to 3

10σ
2
r , while β2

is set to 1
10 rad2. We note that σr < Di,kσθ ∀i, k, where Di,k

represents the distance of ith target from the radar location at
time instant k. In this paper, we work only with the strongly
coupled model with coupling constants κ1, κ2 and κ3 set to
8000, 0.05 and 0.1 respectively. The turn radius rt and turn
speed vt are set to 200 m and 10 ms−1 while δ is set to 0.001.
DHF and SIR-PF particles are initialized by sampling Gaussian
distribution with mean of 20000 m and variance of 5000 m2

for position elements, while their velocities are sampled from
Gaussian distribution with mean and variance of 5 ms−1 and
25 m2s−2 respectively. EKF is initialized by sampling the
Gaussian with initial state vector as mean and with variances
104 and 1 for the position and the velocity respectively. We use
root average mean square error (RAMSE) as the performance
metric. It is defined as following. Let M be the total number of

simulation runs for a particular scenario, xi,mk and yi,mk denote
the positions of the ith target along X and Y-axis respectively,

at time instant k in the mth trial. Likewise, let x̂i,mk and ŷi,mk
denote estimated positions for the ith target. The RAMSE ǫr
is then defined as,

ǫr =

√

√

√

√

1

M

M
∑

m=1

[

1

2d

d
∑

i=1

(

(

xi,mk − x̂i,mk

)2

+
(

yi,mk − ŷi,mk

)2
)

]

We have simulated the scenario a total of fifty times (M =
50). First, we describe the effect of the NI schemes.

A. Effect of numerical integration schemes

We compare the performance of the four methods men-
tioned in subsection III-B. While we wrote scripts for the first
two methods, MATLAB provided functions ode23s and ode15s
were used for the Rosenbrock and the Gear’s methods respec-
tively. We also compare the effect of grid discretization on the
performance of the above schemes. We use two specific cases,
10 uniformly spaced pseudo-time points (coarse discretization)
and 30 exponentially spaced points (fine discretization). We
plot the RAMSE ǫr for different schemes in figure 1. We
note that the Rosenbrock method with 30 λ points has the
lowest RAMSE, while the Euler’s scheme with 10 λ points is
the worst performer followed closely by the Gears-10. Runge-
Kutta methods with both 10 and 30 points are the second best.
In fact, the difference in the performance between the two is
very small. This is followed by the Gear-30 and the Euler-
30 methods. We tabulate the time averaged RAMSE and the
average processing time per particle for all methods in the
Table I. Note that the time values only represents the time
spent while solving the homotopy ODE for a single particle.

The largest and the smallest values are highlighted in red and
green respectively. It can be seen that while the Rosenbrock-
30 is the best method, it is also computationally the most
expensive. On the other hand, the Euler-10 is the fastest but
the worst performer of all methods. While it is slightly worse
than the both RKs and the Gears-30, it is approximately six

Fig. 1: Comparison of numerical integration schemes

times faster than the RK-30 and more than twelve times as
fast as the Rosenbrock-30. Hence, Euler-30 represents a right
trade-off between the performance and the processing time.

Method Avg. Error [m] Proc.time (pp) [ms]

Euler-30 186.69 5.6

Euler-10 223.07 1.8

Runge-Kutta-30 181.68 38.5

Runge-Kutta-10 184.39 12.7

Rosenbrock-30 173.17 71.9

Rosenbrock-10 196.30 55.8

Gears-30 184.49 26.4

Gears-10 186.69 17.9

TABLE I: Comparison of numerical integration schemes

In the proceeding analysis, we use Euler-30 as the default
integration scheme.

B. Effect of shrinkage covariance estimation

Next we analyze the effect of shrinkage estimation
schemes. We compare the performance of the six methods
mentioned in subsection III-C, together with that of sample
and the prior covariance matrices S and PEKF respectively.
We describe by the DHF estimate generated using a particular
covariance estimation scheme X as DHF-X. We use three
metrics to judge the effectiveness of these methods. First and
the foremost is the RAMSE of the DHF estimates, which is
the central criterion. Second, is the accuracy of the covariance
matrix estimates themselves. In the context of the shrinkage
estimation, we use the percentage relative improvement in
average loss or PRIAL as the measure for the exactness of
any shrinkage covariance estimate, following the definition in
[17] . This is given by,

PRIAL =
(

1−
E[||P(.) − P ||

2]

E[||S − P ||2]

)

× 100 (16)

where norm ||(.)|| is the Frobenius norm and S is the sample
covariance matrix estimate, while P(.) and P are the shrinked
and the true covariance estimates respectively. As P is not
known, in the current scenario it is approximated by the
covariance estimate from a sampling importance resampling
particle filter (SIR-PF) with 25000 particles. Third we use
the condition number kcond to analyze the spread in the

79

(a) (b) (c)

Fig. 2: Comparison of shrinkage estimators (a) RAMSE, (b) PRIAL & (c) Log of condition number

eigenvalues of covariance estimates over the time. Plots for
RAMSE, PRIAL and log kcond are shown in figures 2a, 2b
and 2c respectively. Also time averaged values of the measures
are tabulated in the Table II. First we discuss the RAMSE for
DHF with covariance estimates from all methods. We note
that DHF-S is the worst. The S, even though an unbiased
estimate, has high variance, which results in relatively high
DHF estimation error. DHF-EKF comes next as its error is
also wide-off the margin. This can be explained as follow:
given that the measurements are non-linear fucntions of state
variables, and bearing noise is exponentially distributed, the
EKF is not a good approximation for the resulting non-linear
and non-Gaussian scenario. Hence the covariance estimates
generated by the EKF will not be accurate. DHF-LW0 has the
lowest average error amongst all methods. This is because,
PLW0 is a distribution free estimator, and hence it produces
good estimates even in the current non-gaussian scenario. It
is followed by the Stein-Haff and Minimax estimators. DHF
with the other two covariance estimators from Ledoit and
Wolf perform a little inferior relative to the DHF-LW0. Its
because, PLW1 and PLW2 were derived for specific problems
in portfolio estimation and have very special structures. This
lessens their generality and makes them very application
specific. Compared to the DHF-EKF, all estimators except
the sample covariance DHF-S have lower average RAMSE.
Next we discuss the PRIAL for the covariance estimates. The

Method Avg. Error [m] Avg.PRIAL Ave. Cond. Number

Stein-Haff 159.50 83.30 45080

Minimax 160.38 32.0711 55490

Emp.Bayesian 166.61 18.78 46730

Ledoit-Wolf-0 158.47 81.71 180

Ledoit-Wolf-1 160.91 27.01 53220

Ledoit-Wolf-2 168.54 9.38 48470

EKF covariance 186.69 15.15 67770

Sample covariance 206.28 0 142260

TABLE II: Comparison of covariance estimators

expectation in the formula (16) is calculated by averaging over
all simulation runs. A value of 100 means perfect estimation
accuracy, while 0 means accuracy as good as the sample
covariance matrix S. We note that the PRIAL for PSH is
the highest on the average , while is lowest for the PLW2.
Again, this can be attributed to the very specific structure of
this estimator. PRIAL for PLW0, on the other hand is the most
consistent and second best after the PSH . The two also have
quite similar time averaged RAMSE. Infact the RAMSE for
DHF-SH is lowest for a considerable amount of the total time.
As expected, PLW0 has the lowest condition number over
time, atleast two order of magnitude smaller than all other

estimators. S has the highest condition number.

C. Effect of shrinkage covariance estimation and re-drawing

Finally, we describe the effect the combined effect of
shrinkage and redrawing. The re-drawing was described in

Algorithm 2, having parameters ã, b̃ , ν̃. In our simulations, ã
was varied between 0 and 1.5, while b̃ between 0.1 and 1. We
also tested the case of redrawing in every time step. KDE of the
posterior density is carried out using the algorithm mentioned
in [24]. The number of GMM components ν̃ is another
parameter of the redrawing algorithm. We varied ν̃ between
2 and 4. After experimenting with several combinations of ã ,

b̃ and ν̃ , we found out that the combination ã=1.5, b̃ =0.2 and
ν̃=3. has the lowest RAMSE. Also the covariance matrix for
the GMM components is estimated using PLW0. Below we
compare the performance of EKF, SIR-PF with 1000, 10000
and 25000 particles and different flavors of DHF.

Fig. 3: DHF with redrawing

We first note that the EKF has the highest error and
is infact divergent, as the error grows exponentially. Error
for the SIR-PF-1000 grows almost linearly with the time,
pointing to the inadequacy of the number of particles for the
current scenario. Next, we observe that DHF with shrinkage
covariances estimation (SH/LW0) is already as good as the
particle filter with 10000 particles. Redrawing makes a good
situation even better, as it further reduces the estimation error.
DHF-LW0-MVG performance is similar to that of SIR-PF with
25000 particles, while DHF-LW0-KDE outperforms all other
estimation schemes. Redrawing with KDE has lower error
because, instead of approximating the posterior density with
a single multivariate Gaussian, KDE uses three components,
hence the improved estimation accuracy. Next we compare

80

the execution time for a single recursion, including both the
time and the measurement update steps. Simulations were per-
formed on the computer with Intel Core2 Quad with 2.66 GHz
processors and 4 GB RAM. DHF without shrinkage estimation
takes 530ms while DHF-LW0 and DHF-SH take additional 0.2
and 0.4 milliseconds respectively. Hence, shrinking covariance
estimation puts negligable processing overhead. SIR-PF with
1000, 10000 and 25000 particles take 75ms, 1100ms and 4600
ms respectively. EKF is the fastest of all, taking only 0.4ms
per each time step.

VI. DISCUSSION

The Euler method is quite simple, but together with a clever
pseudo-time discretization, can perform quite well. It is the
most time efficient scheme. We also analyzed different shrink-
age estimation schemes. Some of them are tailor made for
specific scenarios. The most general one is shrinkage towards
identity matrix, where no prior structure of the target matrix
is assumed. It is a distribution free approach, and is shown to
have outperformed other shrinkage estimators in our analysis.
Stein-Haff estimator also gives very good results. Even though
it is based on the Gaussian assumption, this estimator works
reasonably well in our non-linear and non-Gaussian case. One
explaination is that, the isotonic regression which is used to
make the covariance PD, still makes the algorithm able handle
the non-normality of the data. The estimation of PSH requires
the eigendecomposition of the sample covariance S. Doing
so could be time consuming for large dimensional systems.
Finally, we studied the effect of redrawing on the quality of
the filter estimates. First, the density parameters are estimated.
Then, the estimated density is used to draw the new set of
the particles. The re-drawing algorithm uses several design
parameters. We show that the KDE based redrawing combined
with the shrinkage estimation gives the best results.

VII. CONCLUSION

DHF filters, even though not new in the literature, are
still not fully explored in detail. They lack the theoretical
and numerical analysis that the other contemporary filters have
gone through. Especially, the implementational details are ad-
hoc and not yet fully formalized. In this paper we have tried to
point out the key factors affecting the performance of a stan-
dard DHF. Then we have gone through each of them individ-
ually and have given the comparison of different approaches.
This includes the pseudo-time discretization, different integra-
tion schemes, estimation of the prior covariance matrix and the
redrawing. Euler’s method with exponentially spaced pseudo-
time points, provides a nice trade off between the performace
and the complexity. DHF with shrinkage covariance estimation
is shown to outperform the DHF with the sample covariace
matrix and the one with EKF estimate. Finally, it is shown that
DHF with properly done redrawing together with the shrinkage
estimation can outperform a bootstrap particle filter, with an
order of magnitude gain in the processing time.

VIII. ACKNOWLEDGMENT

We acknowledge the support by the EU’s Seventh Frame-
work Programme under grant agreement no 607400 (TRAX
- Training network on tRAcking in compleX sensor systems)
http://www.trax.utwente.nl/.

REFERENCES

[1] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on
particle filters for online non-linear/ non-gaussian bayesian tracking,” in
IEEE transaction on signal processing, vol. 50, no. 2. IEEE, February
2002, pp. 174–188.

[2] N. Gordon, D. Salmond, and A. Smith, “Novel approach to
nonlinear/non-gaussian bayesian state estimation,” in IEE Proceedings

on Radar and Signal Processing., Apr 1993, pp. 107–113.

[3] M. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle
filters,” in Journal of the American Statistical Association, vol. 94, no.
446, 1999.

[4] C. Musso, N. Oudjane, and F. Le Gland, “Improving regularised particle
filters,” in Sequential Monte Carlo Methods in Practice, ser. Statistics
for Engineering and Information Science, A. Doucet, N. de Freitas, and
N. Gordon, Eds. Springer New York, 2001, pp. 247–271.

[5] F. Daum and J. Huang, “Nonlinear filters with log-homotopy,” in SPIE

Proceedings, September 2007.

[6] F. Daum and J. Huang, “Nonlinear filters with particle flow induced by
log-homotopy,” in SPIE Proceedings, May 2009.

[7] F. Daum and J. Huang, “Particle flow with non-zero diffusion for non-
linear filters,” in SPIE Proceedings, 2013.

[8] F. Daum and J. Huang, “Numerical experiments on nonlinear filters
with exact particle flow induced by log-homotopy,” in Proceeding SPIE,
April 2010.

[9] S. Choi, P. Willet, F. Daum, and J. Huang, “Discussion and application
of homotopy filter,” in SPIE Proceedings, 2011.

[10] T. Ding and M. Coates, “Implementation of Daum-Huang exact flow
particle filter,” in IEEE Statistical Signal Processing Workshop (SSP),
2012.

[11] K. Bell and L. Stone, “Implementation of the homotopy particle filter
in the jpda and map-pf multi-target tracking algorithms,” in Information

Fusion (FUSION), 2014 17th International Conference on, July 2014,
pp. 1–8.

[12] P. Bunch and S. Godsill, “The progressive proposal particle filter: Better
approximations to the optimal importance density,” Tech. Rep., 2014.

[13] M. Khan and M. Ulmke, “Non-linear and non-gaussian state estimation
using log-homotopy based particle flow filters,” in Sensor Data Fusion:

Trends, Solutions, Applications (SDF), 2014, Oct 2014, pp. 1–6.

[14] F. Daum and J. Huang, “Nonlinear filters with particle flow,” in SPIE

Proceedings, September 2009.

[15] J. Schäfer and J. Strimmer, “A shrinkage approach to large-scale
covariance matrix estimation and implications for functional genomics,”
2005.

[16] C. Stein, “Inadmissibility of the usual estimator for the mean of a
multivariate normal distribution,” in Proceedings of the Third Berkeley

Symposium on Mathematical and Statistical Probability., vol. 1, no.
446, 1956, pp. 197—-206.

[17] O. Ledoit and M. Wolf, “Well-conditioned estimator for large-
dimensional covariance matrices,” Journal of Multivariate Analysis,
vol. 88, no. 2, pp. 365 – 411, 2004.

[18] O. Ledoit and M. Wolf, “Honey, i shrunk the sample covariance matrix,”
The Journal of Portfolio Management, vol. 30, no. 4, pp. 110–119, 2004.

[19] O. Ledoit and M. Wolf, “Improved estimation of the covariance matrix
of stock returns with an application to portfolio selection,” Journal of

Empirical Finance, vol. 10, no. 5, pp. 603 – 621, 2003.

[20] L. Haff, “Emprirical bayes estimation of the multivariate normal co-
variance matrix,” Ann. Statist., vol. 8, no. 3, pp. 586–597, 1980.

[21] C. Stein, “Estimation of a covariance matrix, rietz lecture,” 39th Annual
Meeting IMS, Atlanta, GA, Tech. Rep., 1975.

[22] S. Lin and M. Perlman, “A monte carlo comparison of four estimators
of a covariance matrix,” Tech. Rep. 44, 1984.

[23] C. Stein, “Series of lectures given at the university of washington,”
Seattle, Tech. Rep., 1982.

[24] M. Kristan, A. Leonardis, and D. Skočaj, “Multivariate online kernel
density estimation with gaussian kernels,” Pattern Recognition, vol. 44,
pp. 2630–2642, 2011.

81

