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Abstract—Bayesian Networks have various applications includ-
ing medical and technical diagnosis, financial scoring, and target
behavior/pattern recognition. Bayesian Classification Networks
fuse evidence from heterogeneous and homogeneous sources and
calculate classification results. For many reasons, pieces of evi-
dence from different sources can carry apparently contradicting
information and in these cases are called conflicting evidence.
Diagnostic sensor failure-tests for application in Bayesian clas-
sification processes may be based on a binary conflict definition
or a gradual conflict-level measure. This paper investigates
four different failure-tests: (1) binary Conflict Binomial, (2)
binary Conflict Ratio, (3) gradual Average Conflict, and (4)
gradual Gauss Conflict, with (3) and (4) being new failure-
test proposals. In a comparative air surveillance simulation, the
detection performance of these diagnostic sensor failure-tests is
evaluated and compared.
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I. INTRODUCTION

Applications of classification are widely spread in different

areas, including medical diagnosis, financial credit scoring,

and classification of Chilean wines [1]. In technical fields,

pattern recognition and technical monitoring are typical ap-

plications [2]. Civil and military air surveillance systems

need classification functionality to assign an identity to each

tracked object, see [3], [4], [5]. In this context, classification

is also called identification and typically requires automated

assistance, compare [6].

Formally, classification can be defined as the task of making

”[...] a decision or forecast [...] on the basis of currently

available information [...], in which each new [classification]

case must be assigned to one out of a set of predefined classes

on the basis of observed attributes or features” [7, p. 1].

Bayesian Networks in general, and Naı̈ve Bayes Networks

in particular provide an established approach to classification,

see e.g., [2, ch. 2.11], [8, ch. 8], [9, pp. 205-210]. Performing

classification with Bayesian Networks, for each considered

object probabilities of possible resulting classes are calculated

based on observations of its attributes or features. These

observations are called evidence, feature values, findings, or

source declarations and are typically provided by a number

of heterogeneous sources, compare [8, pp. 265-267].

Findings from different sources are called conflicting ev-

idence, if they carry reliable but substantially different in-

formation, that taken alone, indicate different classification

results, compare [8, pp. 174-179], [10]. Conflicting evidence

may result from deficits and inaccuracies in modeling, or may

have technical reasons, such as flawed or inaccurate sensor

measurements, or failure of raw data evaluation [8, pp. 174-

179], [11].

In our previous work [12], [13], binary indication of a

source in conflict (or not) was used to detect sensor failures

in Bayesian classification. It was shown, that active sensors

with failures are involved in a significantly increased number

of conflicts, a fact that can be used for implementation of

automatic diagnostic sensor failure-tests, see [12], [13]. Our

present contribution examines, whether a gradual conflict

measure providing a continuous conflict value is able to further

improve diagnostic performance of the previously provided

sensor failure-tests.

The outline of this paper is as follows: Section II provides

a short introduction into classification based on Bayesian

Networks and introduces binary and gradual conflicts. Sensor

failure detection’s context is given in Section III, where in

particular different diagnostic tests based on binary and grad-

ual conflicts are defined. Following, in Section IV measures

of diagnostic failure-tests’ performance, a simulation scenario,

and a setup for a comparative simulation are described. In

Section V the simulation results are presented and discussed.

Finally, conclusions are provided in Section VI and some

future work is outlined.

II. CONFLICTS IN BAYESIAN NETWORKS

Bayesian Networks are an established mean to perform classi-

fication, see [8, ch. 8], [14, p. 727]. Naı̈ve Bayes Classifiers [8,

pp. 266-267] are special Bayesian Networks, that stand out by

simplicity and amazing performance, see [15]. For this reason,

we only consider Naı̈ve Bayes Networks in this contribution.

But note, that all definitions, concepts and in particular all

diagnostic failure-tests can be transferred to general Bayesian

Networks in a straight-forward manner.

Naı̈ve Bayes Networks consist of a set C of all possible

classification results, and finite sets Si of all possible evidence

of source Si. These particular networks realize a classifier

function cl : S1 × . . .× SN → C [8, p. 265].

18th International Conference on Information Fusion
Washington, DC - July 6-9, 2015

978-0-9964527-1-7©2015 ISIF 66



Figure 1. Naı̈ve Bayes Network for Classification [12, slightly modified]

Si and C also represent the states of discrete random

variables, which are nodes of the Naı̈ve Bayes Network. For

simplicity reasons, we likewise denote these random variable

by Si and C, whereat each variable takes, with a certain prob-

ability, one out of a finite number of states di,1, . . . , di,Ni
∈ Si

and c1, . . . , cM ∈ C, respectively. Note, that states of random

variables are node-dependent and mutually exclusive. Figure 1

shows the graph of an exemplary Naı̈ve Bayes Network for

classification, taken from [12].

Inference with Bayesian Networks is based on application

of the Theorem of Bayes

p(ci|d1, ..., dN ) =
p(d1, ..., dN |ci) · p(ci)

N
∑

j=1

p(d1, ..., dN |cj) · p(cj)

. (1)

By this theorem, posterior probabilities of classification results

c1, . . . , cM ∈ C are calculated, based on given pieces of

evidence d1 ∈ S1, . . . , dN ∈ SN provided by N sensors, e.g.,

those given in Figure 1.

Taking an application expert’s viewpoint, ’conflicting ev-

idence’ is dissonant information from several sources [10],

whereat ’dissonance’ means ”[...] the extent to which infor-

mation is explicitly contradictory or conflicting” [16, criterion

II.8.2.1.5]. A classical example is a very reliable ’valid IFF

(Identification Friend or Foe) mode 4 response’ of an aircraft,

which would be in conflict with an ’attack on own forces’

declaration by an other source.

From a technical perspective, the experts’ definition is too

vague for implementation. Technical definition approaches for

conflicting evidence reach back to [17] in 1976. More deeply

in context of Bayesian Networks, conflicts have been consid-

ered in the 1990s by [18], [11], [19], and [8, pp. 174-179].

Besides formal definition approaches, this research pointed

out, that a discrepancy between model and declared pieces

of evidence [8, p. 99] is the major characteristic of conflicts’

occurrence. Typically, these discrepancies can be traced back

to rare cases, a model not covering the actual situation, or

flaws and inaccuracies of sensor measurement and raw data

evaluation. Comparison of technical conflict definitions with

the intuitive understanding of application domain experts were

investigated in [10].

Primarily, all of these approaches try to define a criterion for

a conflict being present or not. We call this a binary conflict.

In contrast, a gradual conflict is supposed to measures the

actual conflict level between sources on a continuous scale.

In the following we will provide more formal definitions for

each type.

Binary Conflicts

Apparently, the most established definition approach of con-

flicts is according to [8, pp. 175-176], [11]. Based on this

approach, the slightly modified ’Coherence Conflict Measure’

[10] leads to a conflicts’ definition considering one source Si

compared to all other sources: Given declared pieces of

evidence d1 ∈ S1, . . . , dN ∈ SN , source Si is according to

[10] in conflict with all other sources, iff

(

M
∑

j=1

p(di|cj)

)

·

(

M
∑

j=1

p(d−i|cj)

)

M ·
M
∑

j=1

p(d1, ..., dN |cj)

> (1 + εcoh) (2)

holds, with d−i := (d1, ..., di−1, di+1, ..., dN ) for convenient

notation. Small fluctuations are meant to be suppressed by a

threshold value εcoh > 0.

This conflict’s definition based on Equation (2) considers

the discrepancy between declaration di of source Si and all

other sources’ combined declarations. As the approach in [8,

pp. 175-176], [11], it is based on the idea, that coherent pieces

of evidence support each other, expressed by the inequality
p(di)·p(d−i)
p(d1,...,dN) < 1, compare [11]. Thereby Equation (2) states in

essence, that in a conflict case the joint occurrence d1, ..., dN
is less likely than the occurrence of di and d−i, if considered

independently of each other. More details can be found in [10].

Note, that using this binary conflict definition, it can always

be determined, whether a conflict is present or not.

Gradual Conflicts

Likewise based on the Coherence Conflict Measure [10] the

actual conflict level of source Si can be measured for declared

pieces of evidence d1 ∈ S1, . . . , dN ∈ SN by the conflict-level

67



5 10 15 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

Conflict.Level

D
e
n
s
it
y

Figure 2. Density Estimation of Sources S1: IFF Mode 4

function confcoh : S1 × . . .× SN → [1,+∞) with

confcoh(d1, . . . , dN ) :=

max

⎛

⎜

⎜

⎜

⎝

1,

(

M
∑

j=1

p(di|cj)

)

·

(

M
∑

j=1

p(d−i|cj)

)

M ·
M
∑

j=1

p(d1, ..., dN |cj)

⎞

⎟

⎟

⎟

⎠

.

(3)

The interpretation of the fraction in Equation (3) is basically

the same as for binary conflicts. As soon as the fraction

value is bigger than 1.0, it is interpreted as the conflict-

level of source Si. Note that confcoh(d1, . . . , dN ) = 1.0
indicates coherent findings and that no threshold for conflict-

level detection is needed.

In order to get an impression of the distribution of conflict-

level values, Figure 2 and Figure 3 show density estimations of

source S1 and S10. The values are taken from the simulation

described in Section IV. Obviously, conflict-level values are

not normal-distributed.

III. SENSOR FAILURE DETECTION

Bayesian application can be applied to civil and military air

surveillance with hundreds of tracks to be classified every

hour. To a large number of tracks the same classification task

must be applied, as shown in Figure 4. According to [6], there

is a strong need for automated assistance, in particular with

respect to monitoring of sensor failures, because in each clas-

sification task different heterogeneous sensors are involved.

Note, that formally a source is a sensor in combination with

its data evaluation component, but in this paper we use the

terms sensor and source synonymously.

A sensor failure may have many reasons, ranging from

sensor flaws, inaccurate measurements and evaluation failures

on the technical side (see [8, pp. 174-179], [11]), through an
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Figure 3. Density Estimation of Sources S10: Visual Identification

inadequate configuration to intentional deception or jamming

in military applications [13]. A sensor failure can have dif-

ferent facets, e.g., by providing always the same, deviating,

random or no declarations at all [12].

A. Sensor Failure Diagnostics

In case, no source-internal integrated failure detection func-

tionality is available, comparison of declarations by means of

conflicts’ concept can be used in building a comprehensive

approach of sensor failure detection. This idea addresses in

particular deviating and random behavior of failing sources,

whereas always the same or missing declarations can be easily

detected by other approaches [13].

Subsequently, four approaches of sensor failure detection

are described. The first and second are based on binary con-

flicts, and have been recently investigated in [12], [13]. Both

other approaches are new, and rely on gradual conflict-level.

It is expected, that by use of the gradual conflict measure,

characteristics of conflicts caused by sensor failures can be

better detected.

As sketched in Figure 4, the considered approaches of

diagnostic sensor failure-tests evaluate the previous n classi-

fication cases in a sliding test-window. This is done by either

monitoring actual number ni and frequency level li ∈ [0, 1]
of binary conflicts for each source Si, or the actual mean

value vi ≥ 0 of all conflict-level values greater than 1.0 for

each source Si in context of gradual-conflict based approaches.

These values are compared with reference values l∗i and v∗i ,

recorded in normal operation phases.

B. Conflict Binomial Failure-Test (CBF-Test)

Following [12], a one-sided Binomial test is applied in the

Conflict Binomial Failure-Test, using conflict or no-conflict as

underlying Bernoulli trial with the reference frequency level

l∗i as success probability. The probability αi ∈ [0, 1] of source
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Figure 4. Sensor Configuration and Classification Cases [13, slightly modified]

Si being involved in ni or more conflicts is calculated under

the assumption of no failing source by

αi =
n
∑

j=ni

(

n

j

)

(l∗i )
j · (1− l∗i )

n−j . (4)

Then, according to [12] a sensor failure is indicated, iff

αi ≤ rbin (5)

holds for a Binomial-detection threshold rbin ∈ (0, 1), which

can be adjusted.

C. Conflict Ratio Failure-Test (CRF-Test)

The Conflict Ratio Failure-Test [12] compares actual conflict

ratio li and reference conflict ratio l∗i of source Si by indicating

a sensor failure, iff
li

l∗i
> rratio (6)

for a given adjustable ratio-detection threshold rratio ∈ (0,∞).

D. Average Conflict Failure-Test (ACF-Test)

Based on actual average vi and reference average v∗i of all

gradual conflict-level values of source Si that are greater

than 1.0, the Average Conflict Failure-Test indicates a source

failure, iff
vi

v∗i
> raver (7)

for given average-detection threshold raver ∈ (0,∞), which

also can be adjusted.

E. Gauss Conflict Failure-Test (GCF-Test)

In Section II it was denoted, that conflict-level values of

a source Si are not normal-distributed. Nevertheless, the

reference average v∗i is approximately normal-distributed for

sufficiently large samples. Mean µi and variance σ2
i of v∗i

can be determined in normal operation phases. Based on the

well-known one-sided Z-Test, for the actual average vi the

probability βi ∈ [0, 1] with

βi = pN(µi,σ
2

i
)(X ≥ vi) (8)

can be calculated. A sensor failure is indicated, iff

βi ≤ rGauss (9)

is true for a Gauss-detection threshold rGauss ∈ (0, 1).
Note, that all four diagnostic sensor failure-tests use a

adjustable sliding test-window, that covers the n previous

classification cases, shown in Figure 4. In general, these

diagnostic tests are applicable in sensor configurations with

heterogeneous and homogeneous sensors, which provide evi-

dence on tracked objects in short time intervals, compare [13].

IV. COMPARATIVE SIMULATION

In [12], [13] performance and applicability of the binary-

conflict based Conflict Binomial and Conflict Ratio Failure-

Test have been investigated. The main focus of this paper are

the newly proposed gradual-conflict based Average and Gauss

Conflict Failure-Tests as compared to the binary-based tests.

The following subsection is based on the description in [13]

and recapitulates adequate performance measures:

A. Diagnostic Tests’ Performance Measures

Diagnostic sensor failure-tests can be evaluated and compared

by certain performance measures taken from medical statistics,

as found in [20, pp. 342-349]: Sensitivity and Specificity cover

a technical perspective on diagnostic performance, since in

concrete classification cases, true reference is typically not

available.

• Sensitivity is the probability of detecting a source that is

failing. Therefore, sensitivity measures success probabil-

ity of a diagnostic failure test in detecting defect sources,

compare [20, p. 340], [12].

• Specificity is the probability of proper marking a faultless

sources as impeccable, compare [20, p. 340], [12]. The

false alarm rate is equal to 1−Specificity.

In typical applications, there is a strong need to detect as many

failing sources as possible, i.e., a high sensitivity, while min-

imizing the false alarm rate at the same time. Unfortunately,

these are opposing objectives [13].
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From the operational viewpoint, the following measures

are likewise interesting, because they support interpretation

of concrete test results [13]:

• Positive Predictive Value (PPV) is the probability, that

a source with failure indication is truly defect, compare

[20, p. 342], [12]. Hence, reliability of failure indication

is measured by PPV, which for example may lead to

downgrading the classification process by switching off

sources by operators [13].

• Negative Predictive Value (NPV) is the probability, that

a source without failure indication is truly impeccable,

compare [20, p. 342], [12]. This measure supports op-

erators judgement in case of suspicious (e.g., deviating)

source behavior while no failure indication is shown [13].

The probability of a correct diagnostic failure-test result is

an overall performance measure and is called Accuracy [13].

The portion of defect sources in an application is named

Prevalence of Source Failure and is needed for appropriate

interpretation of the other measures [20, p. 342], [12]. Obvi-

ously, all these performance measures are related to each other,

but each describes a particular aspect of diagnostic sensor

failure-test’s performance.

B. Application Scenario and Simulation Settings

A classical application scenario from air surveillance is used

for our comparative simulation, see [5, pp. 54-57], [21]. With

the Bayesian Classification Network in Figure 1 the following

identities according to the Extended Basic Identity Object

Class (EBIOC) [22] were determined: Own Force Military,

Own Force Civil, Non-aligned Military, Non-aligned Civil,

Enemy Force Military, and Enemy Force Civil. This scenario

was initially taken from [23].

For performance evaluation and comparison of diagnostic

sensor failure-tests, the simulation program from [12] and [13]

is used with the following settings:

• Observability probability pobs of source declarations with

value pobs = 0.3 and

• Probability pact of defect sources’ activities with value

pact = 0.3.

The threshold of binary conflict detection, compare Subsection

III-A, was set to its standard value εcoh = 0.052. Additional

technical details of the simulation approach can be found

in [12]. Each diagnostic sensor failure-test was applied with

different thresholds:

• Binomial-detection threshold: rbin = 0.0001 to 1.0
• Ratio-detection threshold: rratio = 0.0 to 15.0
• Average-detection threshold: raver = 0.0 to 15.0
• Gauss-detection threshold: rGauss = 0.00001 to 1.0

Comparative simulation runs were performed with variations

of these thresholds to compare all four diagnostic sensor

failure-tests to each other, with a typical sliding-test-window

size n = 100. Additionally, application of each sensor failure-

test was simulated with different values n = 50, 75, 100, 150
to investigate performance’s dependency on the sliding win-

dow size. The simulation results are discussed in the following

section.

Figure 5. ROC Curves of All Failure-Tests with n = 100

V. RESULTS

Diagnostic tests’ operating range is defined as (typical) thresh-

old settings with sensitivity and specificity values both above

70%. Within the operating range at window size n = 100,
the Conflict Binomial Failure-Test (CBF-Test) shows accu-

racies from 77.3% to 98.2%, Conflict Ratio Failure-Test’s

(CRF-Test) values lie between 68.8% and 97.0%, and the

Average Conflict Failure-Test (ACF-Test) achieves accuracies

of 72.9% − 95.3%. It was not possible to find a Gauss-

detection threshold for the Gauss Conflict Failure-Test (GCF-

Test) with sensitivity and specificity being in the operating

range simultaneously. Best observed accuracy value of the

GCF-Test is 65.7%. Prevalence values of sensor failures range

within 4.9%− 5.1% in all performed simulation runs.

Receiver Operating Characteristics Results

Detection reliability of diagnostic tests is described by

the opposing performance measures sensitivity and specificity,

compare Section IV. Receiver Operating Characteristic (ROC)

curves [2, pp. 49-51], [20, p. 348] visualize the trade-off

between sensitivity and false alarm rate (=1-specificity) [13].

Sensitivity is denoted on the vertical axis, false alarm rate

on the horizontal axis. In ROC-curve diagrams, different

diagnostic tests can be compared simultaneously, whereat the

upper left corner is the optimal combination of sensitivity and

specificity values, each being maximal [13].

Figure 5 displays the ROC-curves of all diagnostic failure

tests at a sliding-test-window size of n = 100. Within the

operating range, the CBF-Test outperforms the other diagnos-

tic failure tests. The gradual-conflict based ACF-Test and the

binary-conflict based CRF-Test show similar results, with the

former slightly surpassing. Performance of the GCF-Test is
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Figure 6. ROC Curves of Conflict Binomial Failure Tests with n = 50−150

Figure 7. ROC Curves of Conflict Ratio Failure-Tests with n = 50− 150

far below the other diagnostic failure-tests, false alarm rates

below 30% are not achievable.

A good Binomial-detection threshold setting of the CBF-

Test shows a (sensitivity|specificity)-performance value com-

bination of (90.2%|88.0%). For the CRF-Test, a good thresh-

old yield the (85.5%|81.9%) combination, and the ACF-Test

provides a (86.2%|82.8%) sensitivity-specificity combination

for an appropriate setting. The best threshold setting of the

GCF-Test yields only (81.2%|64.9%).

Figure 8. ROC Curves of Average Conflict Failure-Tests with n = 50− 150

Figure 9. ROC Curves of Gauss Conflict Failure-Tests with n = 50− 150

In each of the Figures 6, 7, and 8 the ROC-curves of

one diagnostic test is shown, dependent on different sliding-

test-window sizes of n = 50, 75, 100, 150. Within the oper-

ating range, larger window sizes improve ROC-performance

for all diagnostic test approaches. The CBF-Test benefits

most of a larger window size, enabling a (91.8%|90.8%)
sensitivity-specificity combination. A significant dependency

on larger window sizes is also present for the CRF-Test, with

a (85.7%|84.5%) best-performance values combination. The
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ACF-Test has (86.5%|84.7%) as optimal ROC-performance

for n = 150. Note, that it shows only low dependency on the

window-size, e.g., by a (85.2%|81.3%) combination for size

n = 50.
On a weak level, the GCF-Test likewise strongly benefits

from large window sizes, as displayed in Figure 9. The weak

performance of this test is probably due to the assumption

of a normal-distributed average sum of conflict-level values,

discussed in Subsection III-E and Section II. This prerequisites

seems not to be met adequately, because of too small samples.

Besides the apparent lower limits of the false alarm rates, this

also explains, why the GCF-Test strongly benefits from larger

window sizes as well as from higher observability values pobs
of sources and higher probability values pact of defect sources’

activities, compare Subsection IV-B.

A preliminary summary of the investigation regarding ROC-

performance, i.e., sensitivity and specificity, the binary-conflict

based Conflict Binomial Failure-Test shows the best diagnostic

performance. But it requires higher computational costs and

significantly depends on sliding-test-window size. Gradual-

conflict based Average Conflict Failure-Test and binary-

conflict based Conflict Ratio Failure-Test also show good

results, which are similar to each other. But it is remarkable,

that the ACF-Test has a low dependency on window size,

compared to CRF- and CBF-Test, a fact that may be very

relevant in practical implementations.

Positive vs. Negative Predictive Performance Results

Trade-off between positive and negative predictive perfor-

mance of a sensor failure-test is displayed in a PPV vs. NPV-

curve diagram [13] in Figure 10 with a window size n = 100.
PPV-values are found on the vertical, NPV-values on the

horizontal axis. In our simulation, we used (realistic) low

prevalence values of failing sources, so only the rightmost

part of the curve is relevant.

In our simulation, comparisons’ results of the predictive

performance values PPV and NPV are similar to ROC-

performance results: The CBF-Test clearly outperforms ACF-

and CRF-Test but at the price of higher computational costs.

Gradual-conflict based ACF-Test and the CRF-Test, based on

binary-conflicts produce almost identical positive and negative

predictive values, wherewith the low dependency on window

size of the ACF-Test gets more relevant. GCF-Test lies far

behind.

Summing up, its very good performance make the binary-

conflict based Conflict Binomial Failure-Test to be operational

users’ preference. But size of the sliding test-window affects

the reaction time of diagnostic sensor failure-tests. Therefore,

in certain scenarios smaller window sizes might be an im-

portant criterion, making the gradual-conflict based Average

Conflict Failure Test the better choice.

VI. CONCLUSIONS

In this contribution four sensor failure-tests in Bayesian Clas-

sification Networks, based on gradual and binary conflicts

are investigated. Except for the Gauss Conflict Failure-Test,

Figure 10. PPV vs. NPV Curves of All Failure-Tests with n = 100

the Conflict Binomial, Conflict Ratio, and Average Conflict

Failure-Test showed their suitability to adequately detect fail-

ing sources in a simulated air surveillance scenario. Based

on higher computational costs, the Conflict Binomial Failure-

Test shows best performance results. Both other tests have

performance results and a computational effort similar to each

other. But the newly proposed Average Conflict Failure-Test

has only low dependency on the test-window size, leading

into shorter reaction time of diagnostic sensor failure-tests.

All concepts and diagnostic tests are directly transferable to

general Bayesian Networks.

Future work in this topic might address the prerequi-

site of the Gauss Conflict Failure-Test by finding a better

description of the conflict-levels’ probability distribution as

basis of hypothesis testing. In addition, an approach to better

discrimination between one and several simultaneous sensor

failures would further improve practical applicability.
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