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Abstract—Mathematical and uncertainty modelling is an im-
portant component of data fusion (the fusion of unprocessed
sensor data) and information fusion (the fusion of processed or
interpreted data). If uncertainties in the modelling process are
not or are incorrectly accounted for, fusion processes may provide
under- or overconfident results, or in some cases incorrect results.
These are often owing to incorrect or invalid simplifying assump-
tions during the modelling process. The authors investigate the
sources of uncertainty in the modelling process. In particular,
four processes of abstraction are identified where uncertainty
may enter the modelling process. These are isolation abstraction
(where uncertainty is introduced by isolating a portion of the
real world to be modelled), datum uncertainty (where uncer-
tainty is introduced by representing real world information by
a mathematical quantity), data generation abstraction (where
uncertainty is introduced through a mathematical representation
of the mapping between a real-world process and an observable
datum), and process abstraction (where uncertainty is introduced
through a mathematical representation of real world entities and
processes). The uncertainties associated with these abstraction
processes are characterised according to the uncertainty represen-
tation and reasoning evaluation framework (URREF) ontology.
A Bayesian network information fusion use case that models the
rhino poaching problem is utilised to demonstrate the taxonomies
introduced in this paper.

I. INTRODUCTION

Fusion is the combination of information from multiple
sources to draw more comprehensive, specific and accurate
inferences about the world than are achievable from the
individual sources in isolation. There are many sources of
uncertainty that can affect the performance of a fusion sys-
tem. Data from sensors are inherently noisy. Information
from human sources may be imprecise, ambiguous, irrelevant
and lack credibility. Algorithms for information fusion are
based on models: of the real-world entities and processes
of interest and of how those entities and processes generate
the information being fused. Models are always abstractions
of the phenomena being modelled, excluding some aspects
of reality and simplifying or approximating others. These
abstractions introduce inaccuracies and uncertainties in fusion
results. Poorly understood entities, processes and information-
generation mechanisms introduce additional uncertainty due
to lack of model fidelity to the real world. Models typically
contain tunable parameters such as physical constants, as-
sumptions about the operating environment, or characteristics

of the sensors. These parameters may be only imprecisely
known, introducing additional uncertainty. Other sources of
error include amplification of small errors in inputs through
nonlinear dynamical models, and numerical errors from finite
precision operations on digital computers.

As fusion systems address problems of greater complexity,
difficulties of uncertainty assume greater importance. The Joint
Directors of Laboratories (JDL) [1], [2], [3] and Data Fusion
Interest Group (DFIG) [4], [3] fusion models allow for several
levels of abstraction. As such, fusion systems may model not
only physical entities and processes based on clearly defined
and physically interpretable models, but also higher level
entities and processes such as situation and impact assessment,
for which behaviors are less well-understood and models are
much more uncertain. In situation and impact assessment, there
exists uncertainty in how meaning of symbols (tokens) are
acquired and how these symbols should be chosen to represent
objects and relations between objects in the real world. These
uncertainties become prominent in machine assisted situation
assessment. The problem of symbolic representation and rea-
soning in fusion is known as the semantic challenge [5], [6],
[7]. It is necessary to account for such semantic uncertainties,
but this further adds to the complexities of reasoning and
model generation, which creates yet more uncertainty.

The International Society of Information Fusion (ISIF)
Evaluation Techniques for Uncertainty Representation Work-
ing Group (ETURWG) studies the quantification and eval-
uation of all types of uncertainty in the information fusion
process. The group introduced the Uncertainty Representation
and Reasoning Evaluation Framework (URREF) ontology,
which represents concepts and criteria needed to evaluate
uncertainty management aspects of a fusion system [8]. The
URREF ontology continues to evolve, and has been applied to
characterize uncertainty in a variety of fusion problems (e.g.,
[9], [10], [11], [12]).

The purpose of this paper is to consider, within the context
of the URREF ontology, the different places where uncertainty
enters into the information fusion process, to analyse the
extent to which these uncertainty sources are addressed within
URREF, and to identify any modifications to URREF that are
needed to fully address these uncertainties. The next section
gives a brief overview of the discipline of Uncertainty Quan-
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tification, which has a similar motivation of characterizing and
addressing uncertainties in complex models and simulations.
Then we discuss the process of modelling a real-world process
that is the subject of a fusion system, as well as modelling
the generation of information input to the fusion system.
The uncertainties in modelling and information generation are
discussed and related to the URREF ontology. Finally, a case
study is provided of a fusion system to make inferences about
rhino poaching.

II. UNCERTAINTY QUANTIFICATION

The discipline of Uncertainty Quantification (UQ) is de-
voted to the problem of characterizing and properly addressing
uncertainties in the use of mathematical and computational
models of complex processes and data [13], [14]. This lit-
erature had its genesis in the recognition of the need to
address uncertainty in computer models and simulations of
highly complex physical processes, such as petroleum reservoir
prediction, groundwater flows, or nuclear reactor safety, and to
study how uncertainty propagates through complex models to
affect conclusions drawn from the models.

The UQ literature classifies uncertainties as epistemic or
aleatoric [15], [13]. Epistemic uncertainty is derived from the
Greek word “episteme” and relates to uncertainty owing to a
lack of knowledge or ignorance about the modelled process
or entity. As such this uncertainty lies outside of the entity
or process being modelled. Aleatoric uncertainty is derived
from the Latin word “alea” which refers to the casting of dice.
Aleatoric uncertainty refers to random events within the entity
or process being modelled. A number of sources of uncer-
tainty through which uncertainty enters the modelling process
are considered in [16]. These include parameter uncertainty,
parametric variability, structural uncertainty, algorithmic uncer-
tainty, experimental uncertainty and interpolation uncertainty.
In [16], uncertainties as a result of the mathematical modelling
and variable abstraction process are not discussed separately
from the computer model and its respective abstractions.

UQ is concerned with how uncertainty is propagated
through a model to affect conclusions drawn from the model.
The literature distinguishes two varieties: forward uncertainty
propagation and inverse uncertainty quantification [17], [14].
Forward uncertainty propagation quantifies the effect of un-
certainty in model parameters and input variables (parametric
variability) on the output variables of the model. This typically
involves how measurement errors propagate through the math-
ematical model and how they influence the output variables.
Typical methods to perform such forward uncertainty propaga-
tion analyses are random and deterministic sampling methods.
Sensitivity analysis and response surface methods are other
ways in which the effect of perturbations of input variables on
the output can be quantified [14]. In the information fusion
domain, forward uncertainty propagation may involve how
uncertainty in certain inputs affect the fusion results and ulti-
mately the decisions and outcomes. On the other hand, inverse
uncertainty quantification can be seen as a generalisation of
parameter estimation error analysis [17] and falls within the
category of inverse problems [18]. The objective of inverse
uncertainty quantification is to study discrepancies between
the model and its parameters on the one hand, and observed
outcomes on the other. Inverse uncertainty quantification can

be used for bias correction (which quantifies discrepancies
between model and outcomes), parameter calibration (which
quantifies parameter uncertainty) or both [19]. Methods for
performing inverse uncertainty quantification include frequen-
tist, modular Bayesian or fully Bayesian approaches.

Apart from difficulties with dimensionality scaling, which
are by no means unique to uncertainty quantification methods,
the identifiability problem is particularly interesting [20]. It
may happen that multiple combinations of unknown parame-
ters and discrepancy functions can yield the same experimental
predictions, or in other words fit well to the data. In this case,
different values of parameters or different model functions
cannot be distinguished or identified. In such cases, explicitly
characterising the uncertainty of the parameters and/or models
by probability distributions, belief functions, fuzzy sets and so
on may assist in quantifying such ambiguities.

III. MODELLING REAL WORLD PROCESSES

The modelling process entails several different processes
of abstraction. Within the context of this paper, abstraction is
meant to represent both the domain description and the uncer-
tainties associated with this description. A typical modelling
problem considers a portion of interest of the real world to be
modelled (Figure 1), and here is termed a real world entities
and processes (RWEPs). Ideally, all interactions between all
processes would need to be considered (indicated by dotted
arrows), but as this clearly infeasible, processes are split and
such interactions are replaced by boundary conditions as well
as input and output interactions. This is the first abstraction
that takes place and is here labelled as real world entity and
process isolation abstraction. Although not explicitly shown
in Figure 1, these processes also have a temporal component,
and causal dependencies (dotted arrows) also exist between
different and the same RWEPs at different time instances.

Consider without a loss of generality such an isolated nth
set of entities and processes within the real world denoted by
RWEPn that generates a datum Dn,k at time instant k. The nth
real world process has physical properties that are represented
by the symbol Ωn. The way in which observable effects are
generated by the RWEP, is represented by the transformation
{Dn|Ωn}, and can be read as Dn given Ωn.

The datum is a real world effect that is observed. It is
mathematically meaningless, since a process of abstraction is
needed to convert it into a mathematical quantity such as a
integer, real number, complex vector, a first order logic state-
ment etc. This process is labelled datum abstraction. In some
cases, a datum may also be the output of another fusion process
(such as the output of a filter), and as such dependencies exist
between data points. A datum should also not be confused
with a measurement which has already been transduced by a
sensor into an instantiation of a mathematical quantity. The
RWEP is understood as including the whole process which
provides data or information, and as such includes the source
with perception means, internal reasoning process and possible
uncertainty assignment as suggested in [21]. The datum can
consequently take many different forms, for example ranging
from a raw signal, image, or power levels, possibly transformed
or filtered to remove noise. It can be natural language sentences
such as provided by intelligence reports, the internet, or any
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Fig. 1. The modelling process at time k. Solid arrows indicate how data is generated. Dotted arrows indicate how real world processes influence each other.
Dashed arrows indicate the flow of abstraction during the modelling process. Ribbons indicate processes of abstraction. The symbol † indicates epistemic
uncertainty, whereas the symbol ∗ indicates aleatoric uncertainty.

TABLE I. A TABLE DEPICTING DIFFERENT TYPES OF ABSTRACTION IN THE MODELLING PROCESS, THEIR DESCRIPTIONS AND EXAMPLES

Abtsraction Type Description Example

Isolation
Isolating the RWEP or multiple RWEPs by choosing the domain,

processes and entities of interest in the real world

The features, dynamics and sensing of multiple targets that are observable or

can be inferred indirectly from measurements within the coverage area of

multiple radars. This isolation could explicitly be represented by an ontology.

Datum
Choosing a mathematical or numeric representation of a measurement

zk to represent a real world datum Dn,k or data

Integer, natural number, real number, vector, matrix, complex number, tensor,

norm, first order logic expression, etc.

Data Generation

Choosing a mapping between RWEPs, and data and an uncertainty

representation for representing uncertainty in the data generation process

as well as characterising the real world data generation process

Choosing a probabilistic uncertainty representation and specifying a Gaussian

model of data generation with mean and covariance parameters to model the

generation of range and Doppler measurements by a radar

Process
Choosing states, parameters, a mapping between states and parameters

and an uncertainty representation for states, parameters and mappings

Choosing a hidden Markov model to represent the time evolution of a target

state, where the plant noise captures both uncertainties in knowledge of the

motion model and real world randomness such as air pockets, and imprecise

control inputs by the pilot of an aircraft.

human operator. It also covers the cases of simple numerical
values encoding the signal, pre-modelled information like
score vectors, not yet a probability vector but encoding some
uncertainty provided by some internal algorithm of the source.
It may finally be an uncertainty representation with dedicated
mathematical framework such as a probability distribution,
belief function, possibility distribution issued from another
system with elaborated uncertainty representation processing
and communication. As such, the sensing or perception process
which can produce data is subsumed within RWEPs. The
modelling of such sensing processes which generate data
(sensor models) is discussed next, and this type of abstraction
is labelled data generation abstraction.

In addition to isolation and datum abstraction, another two
processes of abstraction are needed to result in a mathematical
model. The third process of abstraction is the modelling of the
real world data generation procedure. In the case of traditional
probabilistic modelling, this relation is characterised by the
likelihood function Lz(x) = p(z|x, θn). There is an important
distinction that should be made. If zk is kept constant and θn
is the variable, the function p(z|xθn) represents the likelihood
and is a function, not a probability distribution. However if
θn is kept constant and zk is the variable, then p(z|x, θn)
represents the probabilistic model of data generation, and it

is a proper distribution. Note that p(z|x, θn) should include
the sensor model or the model of perception, as the sensor
forms part of the RWEPs and also generates data. The fourth
process of abstraction encapsulates the relevant aspects of real
world processes that generate the data, and result in process
models (PMs). In general, such models are time dependent,
and describe the stochastic evolution of future states based
on past states x and model parameters θ. These states and
parameters are typically abstractions of the real world physical
attributes contained in Ωn. The uncertainty in the PM evolution
is represented by p(xk|xk−1, θn).

In summary, this view depicts four abstraction procedures
that take place in order to arrive at a traditional mathematical
model: real world process isolation, datum abstraction, data
generation process abstraction and real world process abstrac-
tion.

A. The modelling process

Along the lines of the discussion in Chapter 3 of [22],
traditional modelling approaches do not explicitly consider
many of the uncertainties that enter into the modelling process.
Each process of abstraction is a potential entry point for
uncertainty about the underlying real world process. When
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considering RWEP isolation, if non-negligible links between
real world processes are severed, there is uncertainty about
how these will influence the fidelity and performance of the
model. As such, the nature of the uncertainty is epistemic (i.e.
owing to a lack of knowledge about how the RWEP in question
is affected by other RWEPs), and is indicated by a † in Figure
1.

In the case of datum abstraction, if a datum is not suf-
ficiently enumerated, for example if an inherently complex
natured datum is represented by real number instead of a
complex number, some underlying structure in the RWEP may
in turn not be encapsulated by the model. Hence, there is
uncertainty about how well the mathematical quantity captures
the important or relevant properties of the datum. This is also a
form of epistemic uncertainty owing to the lack of knowledge
about the true nature of the datum.

The procedure of data generation abstraction causes epis-
temic uncertainty, since there may be lack of knowledge about
the nature of the transformation from a RWEP to a datum.
In addition to epistemic uncertainty, aleatoric uncertainty (de-
noted by a ∗ in Figure 1) is expressed through the random
nature by which data are generated. Hence the measurement
process is depicted in Figure 1 to contain both epistemic and
aleatoric uncertainties.

A process model relates parameters and states to each other
over time. Epistemic uncertainty enters into the PM through in-
complete knowledge about the corresponding RWEP. Aleatoric
uncertainty enters into the model through random perturbations
in the time evolution of the model. Consider for example a
discrete time varying equation xk = f(xk−1) + ǫ, where x is
the system state. In many cases both epistemic and aleatoric
uncertainties are incorrectly lumped together in ǫ.

The final layers of abstraction, when proceeding from the
mathematical model to a computer model, are beyond the
scope of this discussion. In the case of digital computers, the
use of established scientific libraries and vector-matrix mathe-
matical programming environments make variable abstraction
fairly well characterised. Uncertainties may enter through
algorithmic abstraction in the form of possible incorrect
implementation, numerical instabilities or strange behaviour in
untested states. However, most cases of numerical instabilities
in digital computer code are well characterised [23], and
examples include the inversion of an ill-conditioned matrix, or
numerical instabilities owing to Euler numerical integration. In
this case incorrect implementation would be owing to oversight
by the programmer. Uncertainty abstraction is characterised
by pseudo number generators and Taylor series expansions
to represent continuous probability distributions. Uncertainties
for this type of abstraction are also well characterised in the
literature. If on the other hand, analogue computers were
used, this abstraction would have needed particular care in
characterizing uncertainties, as the results would be noisy.

B. The complete data and process models

In traditional statistical modelling, zk is seen as the “da-
tum” and p(z|x, θn) is seen as the complete encapsulation of
the uncertainty model of z. This procedure ignores the fact that
zk is itself an abstraction of Dn,k, and similarly p(z|x, θn)
is an abstraction of {Dn|Ωn} and as such, any uncertainties

associated with these abstraction processes are ignored. Higher
order uncertainty (uncertainty about uncertainty) is modelled
by imprecise probability models, belief functions or credal sets.
For instance: Rather than a single probability distribution, a set
of probability distributions is considered, and the probability
of an event is defined by upper and lower bounds. As stated in
[22], a complete model of data generation must have the form
p(Γ|x, θn, α), where Γ = {zk, α} is a mathematical model for
zk as well as the uncertainties associated with constructing
Γ, denoted by α. Furthermore, the uncertainty representation
denoted by p(·|x, θn, β) must be a mathematical model of both
the data generation process, as well as the uncertainties β asso-
ciated with the construction of p(·|x, θn, β). This uncertainty
representation is referred to as the generalised likelihood in
[22]. Finally the complete process model p(xk|xk−1, θn, δ)
should encapsulate the uncertainty in the evolution of states
as well as the uncertainties δ associated with the construction
of that model.

IV. UNCERTAINTY DURING DATA GENERATION

It may be worth considering the different kinds of data
generated by RWEPs, since there may be uncertainties about
the relationships between the RWEP and the data (the data
generation process is ambiguous) as well as to what is observed
(the RWEP generating the datum is ambiguous). Figure 2
shows data generation and data source ambiguity in relation
to the generation of data by RWEPs in Figure 1. Mahler [22]
defines four possible combinations of data generation and data
source ambiguities:

1) Unambiguously generated unambiguous (UGU) mea-
surements - These are conventional measurements
where the data are unambiguously generated (the
relationship p(z|x, θn) between states/parameters and
measurements is clearly defined) and the data are
unambiguous (it is known exactly what is observed).
A single target range and Doppler measurement are
examples of a UGU measurement.

2) Ambiguously generated unambiguous (AGU) mea-
surements - These are measurements where the
data are ambiguously generated (the relationship
p(z|x, θn) between states/parameters and measure-
ments is poorly understood, but the data are unam-
biguous - it is known what is observed). A high
range resolution radar (HRR) of synthetic aperture
radar (SAR) is an AGU data generation process, since
their likelihood functions are ambiguously defined
owing to real world variations that are difficult to
characterise.

3) Unambiguously generated ambiguous (UGA) mea-
surements - These are measurements where the
data are unambiguously generated (the relationship
p(z|x, θn) between states/parameters and measure-
ments is exactly understood, but it is not exactly
known what is observed). Examples include features
extracted by humans or digital signal processors from
RWEP data, some natural language statements, and
rules.

4) Ambiguously generated ambiguous (AGA) mea-
surements - These are measurements where the
data are ambiguously generated (the relationship
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Fig. 2. A diagram depicting uncertainty in the measurement owing to ambiguity in the relationship between states/parameters and the measurement through
p(z|x, θn), and ambiguity in what is actually being observed (datum source).

p(z|x, θn) between states/parameters and measure-
ments is poorly understood and it is not exactly
known what is observed. Examples are the same
as for the UGA case, but here sensor models are
constructed using domain expert knowledge.

V. UNCERTAINTY CLASSES ACCORDING TO THE URREF
ONTOLOGY

According to Version 2d of the URREF ontology, the
uncertainties that enter into the model through the four abstrac-
tion procedures can be classified according to nature (epistemic
or aleatoric), type (inconsistency, vagueness, randomness, am-
biguity and incompleteness) and uncertainty representation
(probability, belief functions, rough sets, fuzzy sets and random
sets).

In the evaluation of uncertainty in the modelling of data
and RWEPs there seem to be three classes of criteria that are
relevant. The first is DataHandlingCriterion which consists
of Interpretation and Traceability as evaluation criteria. The
second is DataCriterion, which consists of RelevanceToProb-
lem, WeightOfEvidence, Credibility and Quality. The criterion
Credibility is further expanded to include ObservationalSensi-
tivity, SelfConfidence and Objectivity. The criterion Quality is
further expanded to include Accuracy, Veracity and Precision.
The third class of criteria which seems to be relevant is Repre-
sentationCriterion which consists of Compatibility, Simplicity,
Adaptability, Knowledge handling and Expressiveness. The
criterion of Expressiveness is further expanded to include Re-
lational, Assessment, Dependency, HigherOrderUncertainty,
Outcomes and Configurality.

VI. UNCERTAINTY EVALUATION IN MATHEMATICAL

MODELLING

The different processes of abstraction require evaluation
criteria that capture the uncertainty that enters into the model
through these processes of abstraction. These different pro-
cesses depicted in Figure 1 will be treated in turn below.

A. Isolation Abstraction

Isolation abstraction identifies the variables of interest
(such as the nodes in a Bayesian networks) as having an
observable impact on the decision variables. The isolation
process also separates context and situation and is thus the first
level of abstraction and modelling. This abstraction is guided
by the Relevance DataCriterion, which can be assessed a
priori (set of relevant variables) and a posteriori based on
other DataCriteria of DataOutput (e.g., accuracy, precision)
or ReasoningCriteria (e.g., timeliness), to keep only the most
relevant features to accelerate the computation process with
barely decreased performances. The main source of uncertainty
here is an inaccurate representation of the underlying RWEP
and its interaction with the rest of the real world. As such,
the RepresentationCriterion is of interest here. There is an
inherent trade-off between the three criteria of Simplicity,
Adaptability and Expressiveness when deciding how much
of the real world should be modelled for the task at hand.
In particular Simplicity is typically sacrificed for Adaptability
and Expressiveness. Maximum simplicity should be strived for
while adequately representing (in terms of adaptability and
expressiveness) the part of the real world of interest. This is
reminiscent of Occam’s razor [24]. KnowledgeHandling may
be of interest if the RWEP is a human generating a human
language statement datum.
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B. Datum Abstraction

Datum abstraction selects the scales and domains of the
previously identified observable variables. The Outcomes cri-
terion under Expressiveness could be relevant or useful here.
The key question in this type of epistemic abstraction, is
whether the mathematical representation of the measurement
zk (not the measurement itself), captures the essence of the
observable datum in the real world, i.e. what type and level
of uncertainty is introduced by representing zk as a particular
type of number (integer, natural number, real number, vec-
tor, matrix, complex number, tensor, norm, first order logic
expression, etc.). This is again a representation uncertainty,
and as such RepresentationCriterion is of interest, along with
Compatibility, Simplicity, Adaptability, Knowledge handling
and Expressiveness. If vector and matrix are considered here, it
should be mentioned that they have not been assigned specific
semantics nor satisfy specific axioms. At the next level of
abstraction (data generation abstraction), they are framed in
the mathematical model (probabilistic, evidential, fuzzy sets,
etc) and assigned the corresponding semantics which meet the
epistemic uncertainty meaning (UncertaintyDerivation, Uncer-
taintyType).

C. Data Generation Abstraction

Data generation abstraction defines the uncertainty measure
over the domain of the observed variables of interest, over
the links between them especially between the observation
and inference spaces. As mentioned, data generation inher-
ently has two types of uncertainty associated with it. Starting
with representation again, epistemic uncertainty enters through
uncertainty about the model of data generation p(z|x, θn).
When considering epistemic uncertainty, the question to ask
is whether the most suitable uncertainty representation (prob-
abilistic, evidential, rough sets, fuzzy sets and random sets) is
used for the model of data generation. Again, here the trade-off
between Simplicity, Adaptability and Expressiveness may give
a clue as to the suitability of the uncertainty representation of
the model of data generation. Secondly, consideration of the
aleatoric uncertainty is necessary to characterise the model of
data generation p(z|x, θn), given a particular uncertainty repre-
sentation. This characterisation involves the decision about the
parameterisation of p(z|x, θn) which may be a belief function,
probability density function, and so on. The criteria here
should capture uncertainties that are inherent in the sensing
or measurement process (provide a sensing or measurement
uncertainty model). Thus the DataCriterion is of interest
here, together with the sub-criteria of RelevanceToProblem,
WeightOfEvidence, Credibility and Quality. These are criteria
which evaluate uncertainties that enter as a result of the sensing
or perception process. As such, these uncertainties should be
modelled as part of the measurement generation process. The
three levels of abstraction above are sequentially embedded in
each other and the data generation abstraction includes the two
previous ones.

D. Process Abstraction

As with data generation abstraction there are both epistemic
and aleatoric uncertainties that should be represented and
evaluated in process abstraction. Here, epistemic uncertainty
relates to the model of the underlying entities and processes

(the PM) which is usually dynamic. Such entities and processes
may be hidden, or be indirectly or directly observed through
the data generation process which is described in VI-C. Process
models are characterised by temporal transition functions,
parameters and states and relationships between parameters
and states. Each of these may have some form of epistemic
uncertainty associated with it. These uncertainties are again
evaluated according to RepresentationCriterion, with the same
trade-offs that characterise epistemic uncertainties that were
mentioned before. The uncertainty representation must be
chosen which characterises the temporal transitions functions,
the parameters and the states and relationships between pa-
rameters and states of the model. Typically this uncertainty
representation is the same as that which characterises the data
generation abstraction in section VI-C. The implications of
conversions between uncertainty representations require some
investigation.

Aleatoric uncertainty is generated by the PM and may be
evaluated according to RepresentationCriterion. The fidelity of
the representation of the random events in the RWEP must be
evaluated in this case.

In most fusion systems, the hidden parameters of the PM
need to be inferred and are as such the outputs of a fusion
system. This means that the uncertainties in the outputs should
be evaluated according to DataCriterion, since the outputs of
a fusion process may form the input of another fusion process
and should have a “sensor model” in the second fusion process.
In a sense the outputs become data for a higher level of fusion.

VII. MODELLING WITHIN THE CONTEXT OF FUSION

A fusion system draws inferences about a set of real-
world entities and processes from reports provided by a set
of information sources. This is accomplished through fusion
algorithms that are based, whether implicitly or implicitly, on
models of the subject RWEPs and their relationship to the
reports provided to the fusion system. As discussed above, a
probabilistic fusion system bases its algorithms on a statistical
model of the process {Dn|Ωn} by which RWEPn generates
observable data Dn. In such a model, the properties Ωn of
RWEPn are abstracted as a state x; the observable effects Dn

are abstracted as observations z from different sources, and the
data-generating process {Dn|Ωn} is abstracted as a statistical
model p(z|x, θn) that represents the manner in which RWEPn
produces these observable effects, including the uncertainties
associated with each of the different information sources.

This statistical model p(z|x, θn) forms the basis for fusion
algorithms that draw conclusions about x from the multi-
source observations z. In a Bayesian system, for example,
this is accomplished by defining a prior distribution p(x),
representing what is known about x prior to observing z, and
using Bayes rule to find a posterior distribution p(x|z, θn).
Bayesian inference can also be used to refine knowledge
of the parameters θn of the information generation process,
yielding a posterior distribution p(x, θn|z). Conclusions about
the abstractions x and θn are then translated into conclusions
about RWEPn and {Dn|Ωn}.

VIII. CASE STUDY - BAYESIAN NETWORK FUSION

The paper [9], introduces a URREF interpretation of
Bayesian network (BN) information fusion. It considers a
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model which captures the causal factors that lead to rhino
poachings on an operational level. It lists three types of
uncertainty that enter the BN network modelling process.
These are model structure uncertainty (uncertainty in the
causal links between random variables), parameter uncertainty
(uncertainty in the conditional probability distributions) and
observational uncertainty (uncertainty in the evidence provided
to the network).

Structure uncertainty is epistemic and has to do with the
isolation abstraction. Firstly, we might not have a perfect
knowledge of all the relevant variables significantly influencing
the variables representing the hypothesis (e.g. poaching event).
Consequently, the BN will not explicitly model all the relevant
variables. The inference process will thus be influenced by
confounders. Secondly, we might not have a perfect knowledge
of all the relevant direct influences between the variables
in a BN. Thirdly, some of the dependencies might be left
out on purpose, for the sake of simplicity. In this way the
expressiveness will be influenced.

The parameter uncertainty is related to process abstraction,
since these parameters characterise PMs. The choice of the
BN paradigm and the representation based on conditional
probabilities might not be the most suitable for the problem at
hand. This is due to the epistemic uncertainty. Moreover, the
parameters defining the conditional probability tables repre-
sent inherently random relations between the phenomena that
directly influence each other. It is often difficult to know the
true conditional probabilities due to aleatoric uncertainty.

Five additional types of modelling uncertainty that are
not mentioned in [9] are variable choice uncertainty, variable
type uncertainty, variable range uncertainty, variable semantic
uncertainty and ambiguity conversion uncertainty.

Variable choice uncertainty refers to uncertainty introduced
by the choice of variables to represent a domain or problem in
the real world. It is therefore a form of isolation abstraction,
since it involves choosing which factors will represent real-
world processes and entities.

The following variable uncertainties, apart form observa-
tional uncertainty, appear within the PMs, and are as such
results of process abstraction. Only observational uncertainty
relates to data generation abstraction, and can take the form
of either hard, soft or likelihood evidence. Variable type
uncertainty is the uncertainty introduced by choosing the type
of states, i.e. whether a variable is discrete, continuous, or if the
variable is continuous in the real world but can be discretised
for the BN. Furthermore, in the case of discrete variables, the
variable type can be Boolean, labelled, numbered or interval.
Variable range uncertainty refers to uncertainty introduced by
making a choice of the range of the variable. If the variable is
characterised by a continuous distribution with tails stretching
into +-∞, then the range is (−∞,∞), unless truncated or
defined over a finite interval. In the discrete case there is
uncertainty about the number of states and intervals associated
with each of the states, if the underlying quantity is continuous.
Variable semantic uncertainty relates to uncertainty introduced
by the definition of the variable as it relates to a entity in
a RWEP. This is of particular importance if the underlying
random variable is abstract (for example a sentiment, anomaly
etc.). In the rhino poaching case the “Vegetation” variable

indicates whether the vegetation is palatable to a rhino or
not. It could be confused with other meanings, for example
it may indicate vegetation availability, density or proximity.
The meaning of the random variable must be scoped to fit
the context of its parent variables and/or child variables. If
these variables are observable, this could correspond to AGA
or UGA cases in that it is not exactly known what is observed.
Ambiguity conversion uncertainty captures the case where the
underlying entity in the RWEP has different type of uncertainty
(for example inconsistency, vagueness, ambiguity, imprecision
or incompleteness), and has to be converted to a conditional
probability distribution.

IX. SUMMARY AND CONCLUSION

In this paper, the approaches and abstractions that are im-
plicitly performed as part of the modelling process have been
made explicit. This explicit representation of these approaches
and abstractions was used to demonstrate all the possible entry
points for uncertainty during the modelling process, and to
demonstrate the relevant URREF criteria for evaluating such
uncertainties. Broad categorisation of these uncertainties fall
into two classes. Epistemic uncertainty represents a lack of
knowledge of the underlying real-world entities and processes
being modelled, and lies outside of such entities and processes.
Aleatoric uncertainty represents randomness which is gener-
ated inside of the underlying real-world entities and processes.

Four processes of abstraction are presented. Isolation ab-
straction is the process of isolating part of the real world
that is of interest to be modelled, together with specifying
boundary conditions, inputs and outputs. Datum abstraction
converts a real-world piece of information to a mathematical
interpretable quantity that can be entered into mathematical
functions, transformations and other operations. Data gener-
ation abstraction creates a mathematical transformation that
describes how data are generated by real world entities and
processes, including sensors. Lastly, process abstraction creates
mathematical transformations that describe how states and
parameters are related over time.

Uncertainties in isolation abstraction can be evaluated ac-
cording to the sub-criteria in the class RepresentationCriterion,
as these are epistemic in nature. The same goes for datum
abstraction. The uncertainties that enter owing to the data
generation and process abstraction actions are both epistemic
and aleatoric, and as such can be evaluated according to
both RepresentationCriterion and DataCriterion. In all cases
where RepresentationCriterion is used, there is a trade-off
between Simplicity on the one hand, and Adaptability and
Expressiveness on the other.

Bayesian network fusion for a rhino poaching modelling
problem was the focus of previous papers [9], [25] and is used
as a case study for demonstrating some of the concepts and
ideas in this paper. Modelling uncertainty enters a Bayesian
Network through eight choices about the structure, variables
and parameters of the network. Model structure uncertainty
represents uncertainty in the causal links between random
variables in the Bayesian network. Parameter uncertainty rep-
resents uncertainty in the conditional probability distributions.
Observational uncertainty represents uncertainty in the ev-
idence provided to the network. Variable type uncertainty
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represents uncertainty introduced by making a choice whether
the variable is discrete, continuous, or if the variable is
continuous in the real world but can be discretised for the BN.
Variable range uncertainty represents uncertainty introduced by
making a choice regarding the range of the variable. Variable
semantic uncertainty represents uncertainty of exactly what a
variable represents in the real world. Finally, ambiguity con-
version uncertainty enters if an underlying entity in the RWEP
has different types of uncertainty (for example inconsistency,
vagueness, ambiguity, imprecision or incompleteness) and has
to be converted to a conditional probability distribution.

This focus of this paper is on the uncertainty that enters
in the modelling and abstraction processes, and not explicitly
on uncertainty that enters during the fusion process. Fusion
and reasoning processes could be represented explicitly in
this taxonomy as RWEPs, but then the entire URREF would
apply. A unification of this taxonomy and the process of
fusion would make all sources of uncertainty in the reasoning
process explicit. Thus future work would involve unifying the
Atomic Decision Process of [9] with the taxonomy presented
in this paper. Biases of different agents in multi-agent fusion
systems could be handled through characterisation of data
generation abstraction uncertainties. If such agents have differ-
ent conceptual frameworks (ontologies) representing RWEPs,
then differential isolation abstraction and process abstraction
uncertainties come into play. This could be investigated in
future work. The effect of uncertainties entering through the
abstraction processes on the output of a fusion system can then
also be considered in more detail. As indicated by the BN fu-
sion example, uncertainties in choices of the parameter variable
(continuous/discrete, ranges, semantics, and uncertainty type
conversion) in PMs still need to be more explicitly addressed.
Another task for future work would be to establish better
defined links to the field of UQ. A more explicit consideration
of process abstraction, and how uncertainties are associated
with the abstraction of parameters and states of models are
needed.
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