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Abstract—Detecting and classifying anomalies for Maritime
Situation Awareness gets a lot of benefit from the combination of
multiple sources, correlating their output for detecting inconsis-
tencies in vessels’ behaviour. Adequate uncertainty representation
and processing is crucial for this higher-level task where the
operator analyses information correlating with his background
knowledge. This paper addresses the problem of performance
criteria selection and definition for information fusion systems
in their ability to handle uncertainty. Indeed, i addition to the
classical algorithmic performances of accuracy or timeliness,
other aspects such as the interpretation, simplicity, expressiveness
need to be considered in the design of the technique for uncer-
tainty management for a improved synergy between the human
and the system. In this paper, we dissect several uncertainty
representation and reasoning techniques (URRTs) addressing a
fusion problem for maritime anomaly detection. The uncertainty
supports are identified as a basis for the global expressiveness
criterion. A selection of six elementary URRTs are described and
compared according to their expressiveness power of uncertainty,
using the Uncertainty Representation and Reasoning Framework
(URREF) ontology. This study is considered as preliminary
to guide further development and implementation of fusion
algorithms for maritime anomaly detection, and the definition
of associated criteria and measures of performance.

Keywords: Anomaly detection; Information Quality; Un-

certainty; URREF; Bayesian reasoning; Belief functions.

I. INTRODUCTION

In the field of Maritime Situation Awareness (MSA), de-

tecting and classifying vessels’ abnormal behaviour is a chal-

lenging and crucial task at the core of the compilation of the

maritime picture [1], [2]. It requires not only to extract relevant

contextual information as materialized by maritime routes or

loitering areas for instance [3], but also real time monitoring

of the maritime traffic by a set of sensors mixing cooperative

self-identification systems (such as Automatic Identification

System (AIS)) and non-cooperative systems such as coastal

radars or satellite imagery to overcome the possible spoofing

of AIS signal. In many cases, intelligence information is of

great help to refine and guide the search in the huge amount

of data to be processed, filtered and analysed.

The operator, not only needs to get the appropriate infor-

mation with good quality to make his/her decision, but also

needs to understand the underlying meaning of the information

provided (its origin, how it has been obtained, processed, what

was the context of its creation, etc). For instance, it is of great

interest for the Vessel Traffic System (VTS) operator to under-

stand how an anomaly detector came up with an alert: Which

were the reference data? Which sources were processed?

Was the information and associated uncertainty obtained in

objective or subjective manner? Did the process considered

the sources’ quality and how? Was the contextual information

considered? What is the meaning of the numerical value of the

uncertainty output? What was the underlying logical reasoning

providing the answer? Etc. Higher-order information quality is

also required, such as probability maps about possible threats,

supplemented by uncertainty assessments about the validity

of the probability values, as intervals for instance, or error

performance estimations on algorithms’ performance. These

information quality dimensions are increasing operator’s trust

and use of the system.

The standard performance criteria of algorithms such as

precision, accuracy, False Alarm Rate, Area Under the Re-

ceiver Operating Characteristic (ROC) curve (AUC), or com-

putational cost [4], [5], [6] may not be sufficient and should be

complemented by others to account for the close interaction of

humans with the algorithms. For instance, some criteria such

as adaptability, simplicity, expressiveness need to be consid-

ered as well. The Evaluation of Techniques for Uncertainty

Representation (ETUR) working group works for 4 years now

to define and connect these criteria to the uncertainty models

and frameworks, uncertainty types, uncertainty derivation, un-

certainty nature [7]. Some outcomes of this work are guidance

for the selection and design of adequate tools for reasoning

support, uncertainty traceability and understandability (e.g. ,

[8], [9]). It is also a first step toward some standardization

of the characterization and assessment of uncertainty manage-

ment techniques and by extend, fusion algorithms.

In this paper, we propose to compare six (6) different

approaches (hereafter called Uncertainty Representation and

Reasoning Techniques, URRT) to fuse pieces of information

from a set of heterogeneous sources (hard and soft) as the core

of maritime anomaly detector for route deviation. In comple-

ment to comparative analyses as provided for instance in [10],

[11], the aim of this paper is to provide other comparison

elements which may have an impact on the behaviour (and

performances) of the fusion scheme. In Section II, we briefly

introduce the URREF ontology and introduce the uncertainty

supports as part of possible refinement of the expressiveness

criterion. The anomaly detection problem addressed here as

a use case is presented in Section III and 6 URRTs are

introduced in Section IV, as alternative schemes to solve the

above defined problem, with an emphasized description of
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the uncertainty representation. The 6 URRTs are compared

in Section V and assessed in a qualitative way regarding

their expressiveness. We conclude in Section VI on future

works and possible further challenges to be addressed in the

coming years by the Uncertainty Representation Evaluation

Framework working group.

II. UNCERTAINTY REPRESENTATION AND REASONING

FRAMEWORK (URREF)

The URREF ontology [7] identifies, defines and links

uncertainty-related concepts which come into play when eval-

uating the uncertainty representation and reasoning approaches

underlying any information fusion system. A complete de-

scription of the current state of the ontology is available at

the ETUR working group collaboration web site1, while we

provide here a partial description focusing on the elements to

be discussed in this paper.

The first level concept THING is split into UNCERTAINTY-

NATURE (epistemic vs aleatory), UNCERTAINTYTYPE, UN-

CERTAINTYMODEL (mathematical framework), UNCERTAIN-

TYDERIVATION (objective vs subjective), EVALUATIONSUB-

JECTS and associated EVALUATIONCRITERIA, and SOURCE

(of information).

We provide below a further description of EVALUATION-

SUBJECTS and focus on the EVALUATIONCRITERIA of EX-

PRESSIVENESS under the REPRESENTATIONCRITERIA.

A. Evaluation subjects

Evaluation subjects are the elements composing the URRT

which assessment through the URREF is meaningful [12]. An

evaluation subject is any item which may have an impact on

the system’s output and can be made varying or exchanged,

thus compared and assessed according to a series of cor-

responding criteria. A finer description and characterization

of uncertainty handling in a fusion system would highlight

other aspects when evaluating the fusion algorithm than the

standard measures of performance. Indeed, the system could

not only be assessed globally (based on its output) but also

could each of its components, support of uncertainty, modeling

of uncertainty (representation part) and uncertainty calculus

(reasoning part).

Let h denote the uncertainty representation process taking as

input some data over the observation space X and associated

imperfection, captured and provided to the system by sources

of information observing a particular real world situation. Let

η denote the uncertainty inherent to the problem we attempt

to model and to be captured by h. We distinguish between

η0, the prior uncertainty (without a specific distinction of the

previous instants), and ηt, the uncertainty at time t, the time of

the observation. The uncertainty η comes either from epistemic

uncertainty (limited knowledge of the source) or from aleatory

uncertainty (either from the real world process or from the

source’s process) referring to the UNCERTAINTYNATURE. η

denotes the uncertainty before it is even modeled within the

system and can be expressed in natural language, with a

1www.gmu.org/etur

score vector not within a mathematical framework yet, as a

probability distribution with or without specific meaning, etc.

Let denote by γ the reasoning process taking as input the

transformed input data from the different sources as repre-

sented by h and outputting an answer over a decision space

Y , capturing the user’s needs and interest. The description of

the reasoning part will not be address in this paper and will

be further detailed in an extended version of this work.

B. Uncertainty supports

The uncertainty representation process h is the way by

which the uncertainty is modeled, considered, quantified by

the fusion system we design or analyse. It applies (1) to the

observation space X , either to model a new measurement or

information, or some prior knowledge about the variables of

X , (2) over the decision space Y and (3) at the boundary

between the two spaces, since the link between measurements

and classes are also uncertain. We define the uncertainty

supports, as items about which some uncertainty statement

can be expressed and distinguish between:

• variables of X , either considered individually Xi or

jointly (Xi, Xj) ,

• variables of Y , either considered individually Yi or jointly

(Yk, Yl),
• links between X and Y , (Xi, Yk),
• second-order uncertainty about any uncertainty expressed

over the supports above.

TABLE I
UNCERTAINTY SUPPORTS AND ASSOCIATED MEANING.

Notation Meaning Example of elicitation

η0(Xi) Prior uncertainty about

individual measurements

Distribution of length

values

η0(Xi, Xj) Prior uncertainty about

links between measure-

ments

Joint distribution of

length and type

η0(Yk) Prior uncertainty about

individual output classes

Prior belief about a

given route

η0(Yk, Yl) Prior uncertainty about

links between output

classes

If two routes share part

of the trajectory

η0(Xi, Yk) Prior uncertainty about

links between measure-

ments and classes

Distribution of speed

given a specific route

η0(η0) Prior uncertainty

about uncertainty

expression (second-order

uncertainty)

Uncertainty on proba-

bilistic model represent-

ing length distribution

ηt(Xi, Yk) Uncertainty at t links be-

tween measurement and

class

Distance from measure-

ment to prototype

ηt
s(Xi) Uncertainty at t about

measurements by source

s

Score vector output by

the ATR about the type

η0(ηt
s) Prior uncertainty

about source s quality

(source’s reliability)

Confusion matrix of the

ATR about vessel type

In the case of second-order uncertainty, uncertainty represen-

tations are themselves uncertainty supports since for example,

we may have some uncertainty about the “true” probability

distribution for a given variable. For instance, using imprecise

probabilities as an uncertainty representation model allows to

account for this second-order uncertainty, and rather considers
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a set of probability distributions. Table I lists the uncertainty

supports together with the notation, meaning and example.

In Table III, the URRTs are assessed according to their

ability to capture the uncertainties of Table I.

The uncertainty representation h is assessed by the REPRE-

SENTATIONCRITERIA of the URREF ontology.

C. Evaluation criteria

We focus on the EXPRESSIVENESS criterion, of the REPRE-

SENTATIONCRITERIA group of the URREF ontology. Expres-

siveness is defined as the power of an uncertainty represen-

tation technique to convey relevant aspects of a given fusion

problem [7]. We identify the uncertainty supports as “relevant

aspects” of the problem as they are able to convey the idea

of DEPENDENCY, HIGHER-ORDER UNCERTAINTY, (source)

SELF-CONFIDENCE and extend to the source’s reliability.

Moreover, we assess the uncertainty representation h, ac-

cording to the the three information2 quality dimensions of

uncertainty, imprecision and trueness.

• Uncertainty - Refers to a degree of confidence assigned

to a specific (or set of) value to be “true”, while a single

one is known to be true. Its cause can be either a lack of

knowledge (epistemic uncertainty) or the random vari-

ability of the underlying process (aleatory uncertainty).

When assigned by the source itself it may be called “self-

confidence”, but since we can also assess uncertainty at

the output of the fusion process, we keep the general term

of uncertainty;

• Imprecision - Refers a set of possible values, regardless

how they have been obtained: The smaller the size of the

set, the higher the precision. It represents the inability of

the source to provide a single value or to discriminate

between several values;

• Trueness - Refers the “closeness of agreement between

the expectation of a test result or a measurement result

and a true value” [13]. It is considered here as the

criterion relating a piece of information (either input or

data) to the truth or a reference value.

Usually, imprecision (or precision) and uncertainty are op-

posed [14]: “I’m certain that the speed of the vessel is between

3 and 6 knots” (Imprecise but certain statement) versus “I’m

not certain that the speed of the vessel is 5 knots” (Precise

but uncertain statement). On the other hand, precision and

trueness are often associated in performance assessments of

systems (gathered under the term accuracy in ISO 5725 [13]),

referring to a series of independent tests.

The way these information quality dimensions relate to the

concepts of UNCERTAINTYTYPES, UNCERTAINTYDERIVA-

TION, DATACRITERIA is still under discussion within the

ETUR working group.

III. MARITIME ANOMALY DETECTION PROBLEM

We consider a vessel V observed by a series of sources

S = {s1, . . . , sN} being possibly of different natures such

2The term “information” is used here is a general way to cover other terms
such as data or evidence.

as a coastal radar and its associated tracker, a SAR (synthetic

Aperture Radar) image with associated ATR (Automatic Target

Recognition) algorithm or a human analyst, a visible camera

operated by a human analyst, AIS (Automated Information

System) information send by the vessel itself, some intelli-

gence sources, etc. We consider the problem of associating

V to a route among a set of 5 pre-computed routes and

detect possible abnormal behaviour. The AAP-6-2014 NATO

glossary of terms defines a route as “The prescribed course

to be travelled from a specific point of origin to a specific

destination”.

Let A = {POSITION, HEADING, SPEED, LENGTH, TYPE},

be the set of features of interest to be observed by the set of

sources, and let X be the corresponding observation space,

built in our case from 5 variables corresponding to some

vessel’s attributes. We denote, for any i ∈ A, by Xi the

random variable associated to feature i, by Xi its associated

domain of definition containing the set of its possible values,

by xi ∈ Xi and by Ai ⊆ Xi, a subset of Xi. Let us denote

by xt = {φ
(s1)
p,t ;φ

(s2)
θ,t ;φ

(s3)
s,t ;φ

(s4)
l,t ;φ

(s5)
T,t } a set of observations

jointly provided by the set of sources about the attributes in A.

This notation covers the general case where sources are able

to provide some uncertainty about their statement and thus φ

denotes sources’ statement either as a single measurement, a

probability vector, a natural language declaration, etc. In the

specific case of precise and certain measurements from the

sources, xt is a vector of X . The superscript (si) denotes

the source’s index in S which provided the information. For

the purpose of the discussion in this paper, we consider that

each attribute is provided by a single source (while in general

several sources provide information about the same attribute)

and will thus omit the superscript. Moreover, we focus on the

aggregation (fusion) of all observations obtained at the same

instant in time t, and thus for the sake of simplicity, the index t

will be omitted as well. Uncertainty about the state transition

xt → xt+1 will be considered in further extension of this

work.

A route detector is designed to help the VTS (Vessel Traffic

System) operator to (1) associate vessels to existing routes,

and (2) detect abnormal behaviours to be further investigated.

Among the numerous reasoning schemes solving that prob-

lem, we consider a quite simple one where an anomaly is

detected based on a joint assessment (fusion) of the 5 features

describing the routes. Other said, the behaviour of a vessel

V is detected as being abnormal if the set of its 5 estimated

features is not compatible with a route.

Let R = {R1, . . . , RK} be a finite set of routes possibly

followed by the vessel V for the given area of interest and

let Y be the exhaustive set of corresponding labels where an

additional label y0 represents “none of the 5 routes”, such

that Y = {y0, y1, . . . , y5} where yk is the label output by

the fusion system corresponding to route Rk and y0 is a

“rejection class” corresponding to the abnormal behaviour.

This class gathers the possible events of “The vessel is off-

route”, “The vessel is in reverse traffic on the route”, “The

speed is not compatible with the route followed”, “The type of

the vessel is not compatible with the route followed”, which

are some Maritime Situational Indicators of interest for the

36



4

VTS operator.

The fusion system to be designed aims at establishing a

mapping Ψ : X −→ Y from the observation space X to

the decision space Y such that ŷ = Ψ(x) is the route label

assigned to the vessel V represented by the observation vector

x at time t. The basic underlying reasoning scheme is that

any observed feature is a contribution (positive or negative)

to our belief that V is following a route from R. Indeed,

if all the observed features match a specific route, then the

corresponding route label is assigned to the vessel. If some

conflict exists between the set of observed features and the

routes feature vectors, then V may be assigned to no route.

Thus, it is possible that a vessel is detected to be physically

on route R1, while labeled y0 meaning for instance that its

type and length are incompatible with R1’s features.

IV. UNCERTAINTY REPRESENTATION AND REASONING

TECHNIQUES

We consider here 6 different uncertainty representation

and reasoning techniques (URRTs) as 6 instantiations of the

fusion model Ψ, to be further assessed through the URREF.

The URRTs presented here are very basic schemes far less

complete than the ones reported in the literature addressing the

problem of maritime anomaly detection. Rather, we provide

here a simple presentation for a better understanding of the

underlying reasoning, as a first step for comparison.

A. URRT1: Pattern matching - Euclidean

A standard pattern matching approach computes the Eu-

clidean distances between x and each of the routes of R as:

d(E)(x, Rk) =
√

(x− r(k))′(x− r(k)) (1)

=

√

∑

i∈A

(xi − r
(k)
i )2

where r
(k) is the prototype corresponding to route Rk (see

Section V-B), defined in the feature space X and x
′ is the

transpose vector of x. The ith components of x and r
(k) are

denoted by xi and r
(k)
i respectively. A vector of distances d is

then built, its components d
(E)
k being the distances from x to

each Rk. The quantity d2i = (xi− r
(k)
i )2 can be interpreted as

a degree of match of the observation of feature i to the route.

The decision rule is:

ŷ =

{

argmink d
(E)(x, Rk) if d(E)(x, Rk) < ǫ

y0 else

where ǫ is a threshold to be set according to the operator’s

needs or expectations, representing some tolerance over the

global distance over the 5 features. Many anomaly detection

approaches are based on distances computation as an imple-

mentation of the notion of “closeness to normalcy” (e.g. , [6]).

B. URRT2: Pattern matching - Malahanobis

A modified version of the Euclidean pattern matching

scheme is obtained by using the Malahanobis distance:

d(M)(x, Rk) =
√

(x− r(k))′Σ−1(x− r(k)) (2)

where Σ is the covariance matrix of the random vector X

associated to x, whose coordinates are r.v. Xis. The super-

script −1 denotes the inverse matrix. The element σi,j of

Σ is the covariance of Xi and Xj defined as E(Xi, Xj) −
E(Xi)E(Xj) where E is the expectation operator such that

E(X) =
∑

xp(X = x) for a discrete random variable X

or E(X) =
∫

xp(x)dx for a continuous random variable. The

same decision rule (2) than for the Euclidean pattern matching

is used. However, the threshold ǫ can be set based on the

covariance matrix.

The Euclidean and Malahanobis distances in (1) and (2) are

well suited to features defined over numerical and continuous

scales while they reduce to binary AND for nominal variables

such as the type, for instance. Better suitable distance measures

are usually used based on the aggregation of individual for

each feature, possibly using different definitions than the

square difference (e.g. , [15]). Other distances such as the log

normal probability density (e.g. , [4]) would account for the

route’s statistics as well.

C. URRT3: Probability-based - Bayesian

In the standard Bayesian approach to fusion, the functions

p(Xi = xi|Rk) for variables in X and routes in R represent

the likelihood of observing a specific set of values x on a

given route Rk, based on past information used to build the

routes. The different features are combined following Bayes’

rule:

P (Rk|x) ∝ p(Rk)
∏

i∈A

p(xi|Rk), ∀Rk ∈ R (3)

under the assumption of independent features. The resulting

posterior probability p(Rk|x) represents some belief that

the route followed by the vessel V is Rk given that we

observed x. A normalization factor ensures that a probabil-

ity distribution is obtained. The combination rule (3) can

be written using the posterior probabilities as P (Rk|x) ∝
p(Rk)

(R−1)
∏

i p(Rk|xi)p(xi). The decision rule is the Max-

imum A posteriori Probability (MAP):

ŷ =

{

argmaxk p(Rk|x) if p(Rk|x) > τ

y0 else
(4)

where threshold τ is set to meet the operator’s needs: if the

posterior probability is too uniformally distributed among the

routes, then no clear matching is detected and an anomaly is

returned. The Bayesian reasoning scheme is at the basis of the

Bayesian network approach proposed for instance in [16].

D. URRT4: Probability-based - Non-Bayesian

In a non-Bayesian approach, each measured feature is

considered providing some information (or evidence) about

the membership of x to a given class Rk. For instance,

ps(Rk) = p(Rk|xs) is the contribution of the speed estimation

to the membership of V to Rk and is interpreted as the

probability that V belongs to Rk given (according to) the

estimated speed. Then, the observations are aggregated by a

weighted sum as:

p(Rk|x) =
∑

i∈A

ωip(Rk|xi) (5)
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where ωi ∈ [0, 1] is a weight reflecting the confidence in the

soft decision values computed by the individual sources, and

can be deduced from p(xi). This rule is derived in [17] from

(3) under the assumption of equal p(Rk). The decision rule is

then (4).

E. URRT5: Transferable Belief Model (TBM) model-based

The reasoning scheme considered here is the one proposed

in [18], [19] within the Transferable Belief Model (TBM)

framework and making use of the Generalized Bayes Theorem

(GBT) [20] as the combination rule:

Pl(A|x) = 1−
∏

Rk∈A

(1− Pl(x|Rk)), ∀A ⊆ R (6)

where Pl(A) =
∑

A∩B 6=∅
m(B) is the plausibility of A ⊆ R,

with m being a Basic Belief Assignment (BBA) such that
∑

A⊆R m(A) = 1. Pl(A|x) is the conditional plausibility

of A and is interpreted as the maximum confidence that

can be assigned to A (i.e. , that the route followed belongs

to the subset A) given that x has been observed. As pro-

posed in [18], Pl(x|Rk) is the least committed plausibility

function corresponding to the probabilistic likelihood function

considered as the pignistic probability. For a BBA m, the

pignistic probability is defined for any singleton of R as

BetP(Rk) =
∑

Rk∈A
m(A)
|A| . The decision rule requires then

two steps: (1) the transformation of the Pl measure into a prob-

ability distribution over R (such as the pignistic probability)

such that (2) then the MAP rule (4) can be applied.

F. URRT6: Belief functions-based - Database query

Similarly to the probabilistic non-Bayesian URRT4, each

observed feature xi of x is assumed to provide some evidence

about route Rk being the route followed by V . The uncer-

tainty is modeled by belief functions rather than by posterior

probabilities.

Each observation xi is regarded as a query to R such

that only the items satisfying the associated criterion are

retrieved, to form a set of possible routes Ai. For instance,

A1 is the set of routes compliant with a measured speed

of 5 knots. Then, some uncertainty is assigned to this set

under the form of a BBA mi over R. While Ai is the set

of routes satisfying the query (Ai = {R ∈ R|xi ∈ R(i)}),

its numerical weight mi(Ai) is interpreted as the degree of

belief that can be assigned to Ai and none other subset

of Ai. For instance, let φT = [0.4 0.3 0 0.3 0]′ be the

uncertainty regarding the type of the vessel output by the

source. Then, ACargo = (R1, R2, R3, R4, R5) is the set of

routes possibly followed by cargo vessels and is assigned a

weight of 0.4, ATanker = (R2, R3, R5) and m(ATanker) = 0.3
and APassenger = (R2, R5) and m(APassenger) = 0.3. This

multivalued mapping does not define a probability distribution

over R but a BBA since mi(A) 6= 1−mi(A).

The resulting BBA m over R is obtained by combining

the individual contributions of each feature by the conjunctive

rule, where weights are assigned to conjunctions of sets of

routes Ai and Aj :

m(A) =
∑

Ai∩Aj=A

mi(Ai)mj(Aj), ∀A ⊆ R (7)

The decision rule is similar to (8) but considers the conflict

measure as a criterion for anomaly:

ŷ =

{

argmaxk BetP(Rk) if m(∅) < β

y0 else
(8)

where BetP is the pignistic transformation of m. The quantity

m(∅) is the BBA of the empty set after combination and rep-

resents the global weight of conflict between all the sources.

If they agree on at least one route to be the followed by V ,

then m(∅) 6= 0. The threshold β is set according to the user’s

needs.

V. ASSESSMENT OF URR TECHNIQUES

To characterize the different approaches for a better under-

standing, to guide the design of anomaly detectors, and to

ultimately select the most appropriate solution to the given

problem of maritime anomaly detection, we illustrate how the

URREF and its associated criteria ontology can be used.

A. Elements of the observation space

The basic domains for variables represent user’s needs and

interest and are considered constant for the 6 URRTs, although

they could have been set differently. Also, we consider that the

sources directly report on these domains. The 6 domains are

listed in the first rows of Table III.

B. Uncertainty in the decision space

The set of routes is previously extracted based on a large

number of AIS tracks for the given area, as described in [3] and

illustrated in Figure 1. Each route is represented in a synthetic

Fig. 1. Set of routes for the given area under observation.

38



6

TABLE II
DICTIONARY OF ROUTES AND ASSOCIATED UNCERTAINTY REPRESENTATION.

Route Name Synthetic route Traffic information

POSITION COURSE SPEED LENGTH TYPE

{(p
(k)
i

, θ
(k)
i

)}N
i=1 ±w(k) µθ ± 2σθ µs ± 2σs [lmin; lmax] p over T

R1 RP02toEX5 {WP}(1) ± 5km 210 ±25◦ N (11, 2) [80; 200] [1 0 0 0 0]

R2 RP01toEX3 {WP}(2) ± 2km 245 ±30◦ N (12, 3) [20; 170] [0.43 0.43 0.05 0.05 0.04]

R3 RP01toPO4 {WP}(3) ± 1km 280 ±30◦ [2; 16] [20; 290] [0.5 0.5 0 0 0]

R4 RP02toEX27 {WP}(4) ± 4km 185 ±10◦ [10; 16] [20; 230] [0.75 0 0 0 0.25]

R5 REN1toEX15 {WP}(5) ± 1.5km 325 ±20◦ (N (12, 2);N (19, 2)) [110; 200] [0.67 0.11 0 0.11 0.11]

way by a series of waypoints with associated headings. Other

attributes characterizing the kind of traffic of the route about

the vessels traveling on this route are added such as the speed,

length and type of vessels.

Routes are extracted by clustering a large amount of trajec-

tories gathered from AIS signals and synthesize the maritime

traffic observed in the past for the given area. By nature, routes

are ill-defined objects, and their uncertainty characterization

and representation is of prime importance for a proper con-

sideration in the anomaly detection procedure. Figure 2 is an

example of the route characterization of uncertainty that has

been used to built the dictionary of routes of Table II. Each

Fig. 2. Statistics from route extraction as a basis for uncertainty representa-
tion.

route is represented by a prototype r
(k) which features are

precise and certain values corresponding for instance to the

mean or mode of the corresponding distributions. However,

some imprecision or uncertainty information about routes can

be extracted based on the statistical information from the raw

AIS dataset for a richer representation. For instance, the route

width wk is an imprecision parameter defined as the average

distance between the minimum and maximum distance to the

mean trajectory (waypoints) along the route. It is extracted

from raw data and defines an area where the vessels have

been observed in the past.

The statistics extracted from the raw AIS dataset serve as

the basic ingredient for both (1) the uncertainty representa-

tion about the route objects and (2) the uncertainty about

new measurement. The histogram of the different attributes

(Speed Over Ground (SOG), Course over Ground (COG),

Length, Type) are further interpreted as likelihood functions

p(Xs = s|yk) and approximated by different models.

For instance, the speed attribute for Route R1 can defined

by the couple (s̄1;σ
(s)
1 ) representing the mean and variance of

speed values estimated on the training data set of trajectories

used to build R1. Another representation could be (s̄1;±σ
(s)
1 )

defining a range of acceptable values to decide that the

observed speed of the vessel corresponds to R1. A Gaussian

or a Mixture-of-Gaussian (MoG) model could be used as well

for the conditional likelihoods of the SPEED and LENGTH for

instance. Then we could have either p(Xs|Rk) = N (µk
s ;σ

k
s )

or p(Xs|Rk) =
∑m

j=1 αkN (µk
s(j);σ

k
s (j)).

The impact of such alternative representations on the answer

provided by the system could be assessed then through the

URREF, but the representation will be considered fixed in this

paper. We rather focus on the ability of the URRT to capture

or account for this uncertainty (expressiveness criterion).

C. URRTs analysis and comparison

Table III summarizes the comparative description of the 6

URRTs presented in Section IV as candidate solutions to the

same problem of maritime route detection. The expressiveness

of the URRTs relatively to the different uncertainty supports

identified in Section II-B is first assessed in a binary way,

so that “No” means that the technique does not account

for the uncertainty on the corresponding support. Then, the

quality dimension (trueness, uncertainty, imprecision) consid-

ered together with the uncertainty function are mentioned in

case the URR technique does. The meaning of the different

uncertainty supports listed in the first column are given in

Table I. The corresponding criteria of the URREF ontology

are mentioned in italic, highlighting possible extension of the

URREF ontology to cover all the uncertainty supports.

We observe that the standard pattern matching approach

(URRT1) does not account for any uncertainty support: The

route representation is considered as precise and certain, as

the prototypes are defined by single values (either the mean

or the mode, for the type); the dependency between variables

is not considered, nor is the possible links between routes;

sources’ uncertainty (or self-confidence) about their declara-

tion is not considered; sources’ reliability is not represented,

nor any second-order uncertainty. The only information quality

dimension considered is the trueness through the distance

measure, the route prototype being considered as a reference:
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TABLE III
EXPRESSIVENESS POWER COMPARISON OF UNCERTAINTY REPRESENTATION AND REASONING TECHNIQUES.

URRT Name URRT1 URRT2 URRT3 URRT4 URRT5 URRT6

Mathematical framework Geometry Geometry, Statistics Probability,

Bayesian

Probability, Non-

Bayesian

Evidence theory,

TBM

Evidence theory

D
o
m

a
in

s

X1 {C1, . . . , C10000}
X2 {[0; 8], ]8; 15], ]15; 100]}
X3 {N ;NW ;W ;SW ;S;SE;E;NE}
X4 {[0; 20], ]20; 50], ]50; 400]}
X5 {Cargo;Tanker;Fishing;Passenger;Others}
R {R1, R2, R3, R4, R5}

EXPRESSIVENESS

η0(Xi) No Imprecision No No No No

E(X2
i )

η0(Xi, Xj) No Uncertainty No No No No

Dependency E(Xi, Xj)
η0(Rk) No No Uncertainty No No No

p(Rk)
η0(Rk, Rl) No No No No No No

η0(Xi, Rk) No No Uncertainty Uncertainty Uncertainty Imprecision

p(xi|Rk) p(xi|Rk) Pl(x|Rk) A ⊆ R
η0(ηt

s) No No No Trueness + Preci-

sion

No No

Source’ reliability p(x̂i|xi)
η0(η0) No No No No Imprecision Imprecision

Higher-order

uncertainty

[Bel(A); Pl(A)] [Bel(A); Pl(A)]

ηt
s(Xi) No No No No No Uncertainty

Source’ self-

confidence

φiU
n

ce
rt

a
in

ty
su

p
p

o
rt

s
(s

ee
T

ab
le

I)

ηt(Xi, Rk) Trueness Trueness Uncertainty Uncertainty Uncertainty + Im-

precision

Uncertainty + Im-

precision

d(xi, r
(k)
i

) d(xi, r
(k)
i

) p(Rk|x) pi(Rk) Pl(Rk|x) mi(A)

the distance to a route can be interpreted as a degree of

closeness between x and Rk.

The extension of URRT1 using the Malahanobis distance

accounts for both the spread of the routes along the different

features (through the individual standard deviations σis) and

the dependency between variables (through the covariances

σi,js). The variance can be interpreted as a measure of

imprecision regarding measure xi. The covariance could be

interpreted as some uncertainty about the link between Xi and

Xj : The higher the correlation between variables, the lower

the uncertainty of one variable given the other. Thus URRT2

accounts for prior uncertainty of each measurement through

a statistical measure of imprecision for the distribution of

Xi as well as for the possible statistical dependency between

variables of X .

The independence assumption still applies to the Bayesian

approach of URRT3. No consideration for either source’s

reliability nor self-confidence as the measurement itself is

assumed as both certain and precise by the source. Rather

the uncertainty is described at the mapping between X and

R where the likelihood p(xi|Rk) describes how probable

is to obtain a given measurement provided that the vessel

followed a specific route. Prior uncertainty about routes is

explicitly considered by p(Rk), and could be based on other

contextual information such as meteorological or seasonal.

Including source’s reliability about measurements is a direct

extension (see for instance [21]), as well as considering the

dependencies. The aggregation is done through a product

operator which has the drawback of decreasing very rapidly

to 0 once one of the likelihood is very low.

In the probabilistic non-Bayesian approach of URRT4,

the individual likelihoods are multiplied, and the higher the

likelihood according to each feature, the higher the posterior.

URRT4 does not consider the dependency between features,

but although the independence assumption between features

is in this case wrong, this naive Bayesian fusion rule is

however shown to provide good (accurate) results. This can

be explained by the randomness of likelihood estimates, the

low variance mitigating the obvious bias [22].

URRT5 may be seen as an extension of URRT3 within the

TBM model, where non-additive functions (i.e. , plausibility)

are used rather than probabilities. Equation (6) is obtained

under the assumption of a vacuous prior on R, meaning that

no prior information on routes is considered. The plausibility

function Pl(x|Rk) models some imprecision about the precise

likelihood function p(x|Rk) used in URRT3. The output of the

GTB being also a plausibility function, assigns plausibility val-

ues to subsets of R, defining then a second-order uncertainty

by means of a couple plausibility-belief measure expresses

some uncertainty about the posterior event Rk|x. This second-

order uncertainty is not considered in the traditional Bayesian

approaches where the probability estimations are considered

certain. Other equivalent approaches exist framed into impre-

cise probability or robust Bayesian.

In URRT6, the uncertainty output by the source about the

measurement provided is considered. Rather than a single (pre-

cise and certain) measure, each source outputs a probability

distribution over the set of values of their respective feature

which induces as many multivalued mappings over R when

querying the dictionary of routes. The prior uncertainty on

the links between X and R is characterized as sets of routes

(imprecision) satisfying some criteria about the features. This
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is further combined with the uncertainty of the source at time

t, expressed by φi which induces the resulting BBA. The

characteristic of this scheme is to deal with subsets of routes,

in a qualitative way, with an additional quantification.

Each of the URRT above could be improved to account for

the reliability of the sources (using the discounting operation

for belief functions for instance [23] in URRT6, or as proposed

in [21] for extending URRT3), for the prior, etc. Extended

work will cover this aspect.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a detailed description and com-

parison of 6 uncertainty and reasoning techniques (URRTs)

to information fusion in their ability to handle uncertainty.

The different schemes all solve the same problem of maritime

route and detection through different uncertainty handling

approaches. The elements of expressiveness are derived within

the observation and decision space, the junction between both

as well as second-order uncertainty. Through the identification

of the uncertainty supports, the URRTs have been shown to

account for uncertainty about distinct variables making use

however of the same basic ingredient of likelihood functions,

for instance. This should warn the designer on the need of

careful handling of uncertainty. In particular, if the elicitation

of prior uncertainty is based on the same data than the ones

used to build the routes, then some uncertainty maybe counted

twice within the system and the result may be biased.

The expressiveness criterion should not be assessed in

isolation and it is only the joint assessment of the various

criteria which make the URREF valuable. Indeed, as exem-

plified by the non-Bayesian probabilistic rule (URRT4), a

lack of expressiveness about the dependency, may improve

the overall accuracy of the algorithm through some natural

balance process.

Rather than identifying a “winner” approach, the compari-

son between URRTs presented aimed at highlighting the differ-

ences and possible complementarity in uncertainty representa-

tion and expressiveness. Each of the basic schemes presented

here can be enriched to account for more uncertainty supports,

for a richer expressiveness. In future works we will develop

these ideas trying to enrich each model with the elements of

the others and characterize their possible limitations, if any.

Also, through the implementation of the different schemes,

we will evaluate their performances on series of test along

the criteria of precision and trueness (accuracy), timeliness,

computational cost.
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