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Abstract—In sparse target detection problems, it has been
shown that significant gains can be achieved by adaptive sens-
ing. We generalize previous work on adaptive sensing to (a)
include targets of multiple classes with different levels of mission
importance and (b) account for multiple sensor models. New
optimization policies are developed to simultaneously locate,
classify and estimate a sparse number of targets with limited
resource budget. More specifically, three sensor models are
considered: global adaptive (GA) sensor that allocates different
amounts of resource to each location in the space; global uniform
(GU) sensor that allocates resources uniformly across the scene;
and local adaptive (LA) sensor that allocates fixed amount of
resources to a subset of locations. Based on the sensor model,
we propose 3 policies: GA policy that uses a GA sensor; LA
policy that uses only LA sensor; and GU/LA policy that uses a
mixture of GU and LA sensors. The performances of proposed
policies with these sensor models are compared numerically with
a baseline policy that allocates resources uniformly and an oracle
policy with known target locations. Results indicate that the
GA policy performs closely to the oracle policy with sufficient
resources, and the GU/LA policy performs similarly to that the
GA policy but it is cheaper and more easily implementable.

I. INTRODUCTION

This work considers localization, classification, and esti-

mation of targets from observations taken sequentially and

adaptively. In particular, we focus on the regime where (a)

the number of targets is sparse compared to the size of the

scene, and (b) some of the targets are more important than

others. For example, in search-and-rescue missions, detection

of survivors has significantly higher mission importance than

detection of other features in the environment. Similarly, a

radar operator may be more interested in detecting/tracking a

tank rather than a car, though both might sparsely populate

the scene.

Viewing the targets as sparse signals, adaptive localization

and estimation use past observations to shape future mea-

surements of the scene [1]–[3], which can result in stronger

signal-to-noise ratios. The performance gain occurs by adap-

tively focusing the majority of sensing resources only on the

dimensions of the signal that contain targets. Applications

where adaptive sensing has been used include image acquisi-

tion/compression, spectrum sensing, agile radars, and medical

imaging [2]–[7].

Previous work has shown that adaptive sensing problems

can be formulated as partially observable Markov decision pro-

cesses (POMDPs) [8]–[11]. Applications include surveillance

[8,9] and robot coordination [11]. However, the complexity

of POMDP solutions grows exponentially with the number of

targets and sensors, making them generally intractable for the

size of problems that we consider here. This scaling is further

complicated by coupling of sensors, combination of continu-

ous signals and actions, and heterogeneity of sensors/targets.

In this work, we provide approximate solutions that are both

tractable and also perform very well in comparison to baseline

policies (lower bound) and oracle policies (upper bound).

Previous work in adaptive sensing [1]–[3] considered only

the two-class problem, where a target is either absent or

present. In many applications, such as surveillance and search-

and-rescue missions, targets may have different classes with

varying importance to the mission. In this setting, detection-

based methods may waste resources on unimportant targets

and thus suffer performance losses for the important ones. This

work explicitly accounts for multi-class targets with different

mission importance.

Previous work also depends on the availability of an agile

sensor that can allocate sensing resources to any combination

of locations in the scene at the same time and with potentially

different effort (i.e. dwell time or energy) [2,6]. In some cases

we may only have access to sensors with restricted agility.

This work explicitly considered more realistic sensor mod-

els: a global uniform sensor that allocates the same amount

everywhere, or a local adaptive sensor that allocates sensing

resources only to a limited set of locations. In this paper, we

analyze the performance differences between these types of

sensors.

There is relatively limited work for planning with multiple

types of sensors and tasking agents, particularly when the

size of the scene is large. Previous work [12,13] proposed

a planning algorithm for a team of heterogeneous sensors

with the goal of maximizing mission importance. This algo-

rithm showed that tasking agents achieved significantly better

performance gains when target exploration included mission

importance in the planning stage, as compared to an explo-

ration policy that only depended on target uncertainty. But it

was assumed that the number and location of targets were

known a priori. In this work, we relax this assumption and

simultaneously localize targets while doing sensor planning.

We provide a Bayesian formulation that generalizes our

previous work [2,6] to include multi-class targets with different
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mission importance. We propose an objective function that

is approximately optimized to yield allocation policies for

multiple heterogeneous sensors. The performance of these

policies is compared numerically to baseline policies, oracle

policies and previously proposed policies. Results indicate

adaptive policies can perform significantly better than the

baseline policy and come close to the oracle in many cases.

Moreover, policies which include mixtures of global uniform

sensors and local adaptive sensors (practical and cheap) can

perform closely to a single global adaptive sensor (possibly

impractical or expensive) in many cases.

The rest of the paper is organized as follows: Section

II presents the target and observation models; Section III

provides an objective function and approximate optimization

methods; Section IV compares performance of policies; and

the paper concludes in Section V.

II. MODEL

A. Signal model

Consider a scene of dimension N , which contain a small

number of targets. The i-th location is characterized by its

target class Ci ∈ C = {0, 1, · · · }, where Ci = 0 indicates the

absence of a target. Define {pc}cC as the prior distribution

of the target class, then the sparse targets assumption can

be restated as p0 ≈ 1. Correct classification of a location to

class c yields a known reward h(c) to the mission (hereafter

referred to as the mission importance), and h(0) = 0. For

example, in a 3-class problem, we might consider c = 0, 1, 2
with h(c) = 0, 1, 10, respectively, to represent the no-target,

low-value target and high value target classes.

Associated with each location i is an amplitude Xi, called

the signal and modeled as follows:

Xi|Ci = c ∼

{

0, c = 0
Normal(µc, σ

2
0), c 6= 0

. (1)

In words, conditioned on the event Ci = c for c > 0, Xi

is zero with probability one if c = 0, and is distributed as a

Gaussian random variable with known mean µc and variance

σ2
0 if c > 0. It should be noticed that we assume the variance

of non-empty classes are the same σ2
0 , this can be restrictive in

some cases. However, we will show that it leads to simplified

optimization problem and argue that it can be easily extended.

Given total sensing budget Λ, a sequence of T stages of

observations are made with resources λi(t) that vary with

index and stage t = 0, · · · , T − 1. The exploration resource is

application-dependent and can represent extended effort like

observation time, number of samples, or battery life. Given

λi(t), the corresponding observation yi(t) takes the form:

yi(t) = Xi +
ni(t)
√

λi(t)
(2)

where {ni(t)}i,t is i.i.d. zero-mean Gaussian noise with vari-

ance ν2. If λi(t − 1) = 0, no observation is taken. A key

point of this model is that the observation quality increases

with sensing effort (i.e., λi(t − 1)). The resource allocations

are constrained with the following total resource budget:

T−1
∑

t=0

N
∑

i=1

λi(t) =

T−1
∑

t=0

Λ(t) = Λ, (3)

where Λ(t) are the per-stage budgets. For convenience,

we write λ(t) = [λ1(t) λ2(t) . . . λN (t)]T , y(t) =
[y1(t) y2(t) . . . yN (t)]T (similarly for other indexed quantities)

and define Y (t) = {y(1),y(2), . . . ,y(t)}. The sequence of

effort allocations λ = {λ(t)}
T−1
t=0 is called the allocation

policy, where λ(t) is a mapping from Y (t) to [0,Λ(t)]N .

B. Sensor model

In many cases, the system may have various types of sensors

available. These sensors typically vary in sensing agility,

range, energy consumption, and cost. We consider three types

of sensors: global uniform (GU) sensor, global adaptive (GA)

sensor, and local adaptive (LA) sensor. The global adaptive

sensor is able to chose any subset of the scene and allocate

different amounts of sensing resource to dimensions of the

subset. These sensors provide the most agility, but may not

exist in reality or are very expensive to build and deploy.

The global uniform sensor explores all dimensions, but with

equal sensing resource in each dimension, for example, a

global camera that can monitor the entire scene. Therefore,

it is likely to spend resources in locations without targets

and suffer performance degradation compared to the global

adaptive sensors. Finally, the local adaptive sensor is limited

to exploring only a small number of locations within the scene,

albeit with high resolution, e.g. UAVs. These sensors tend to

be cheap as compared to global adaptive sensors and may be

easily available in practice. Table I and Figure 1 compares

these sensor types with regard to their allocations.

TABLE I: Comparison of sensor types and allocations

Sensor Type Allocation Adaptivity Availability

Global Adapt. λi(t) ∈ [0,Λ/T ] Full Low

Global Unif. λi(t) = Λ/(NT ) None High

Local Adapt. λi(t) = kΛ/(MT ),
k = {0, 1, . . . ,M}

Limited Medium

(a) Global adaptive (b) Global uniform (c) Local adaptive

Fig. 1: Comparison of three types of sensors. GA may allocate

differently to each location. GU allocates uniformly over the

scene. LA allocates discrete units to a subset of the scene.
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III. SEARCH POLICY

A. Objective function

Define indicator functions I
(c)
i :

I
(c)
i =

{

1, Ci = c

0, Ci 6= c
. (4)

At stage t, Denote the posterior mean (conditional mean es-

timator), variance and classification probability as are defined

as X̂
(c)
i (t), (σ

(c)
i (t))2 and p

(c)
i (t):

X̂
(c)
i (t) = E

[

Xi

∣

∣Y (t), Ci = c
]

(5)

(σ
(c)
i (t))2 = var

[

Xi

∣

∣Y (t), Ci = c
]

(6)

p
(c)
i (t) = Pr(Ci = c|Y (t)) (7)

with X̂
(c)
i (0) = µc, (σ

(c)
i (0))2 = σ2

c , and p
(c)
i (0) = pc.

In this work, we consider a generalization of the cost

function in [2] to multiple target classes that accounts for the

mission value of each class h(c):

JT (λ) = E

[

N
∑

i=1

∑

c∈C

h(c)I
(c)
i (Xi − X̂

(c)
i (T ))2

]

, (8)

To simplify further, notice that the posterior covariance

(σ
(c)
i (t))2 follows the following update rule:

1

(σ
(c)
i (t+ 1))2

=
1

(σ
(c)
i (t))2

+
λi(t)

ν2
=

1

σ2
0

+

∑t
t′=1 λi(t

′)

ν2
,

(9)

which does not depend on class c1. Subsequently, we define

the class-independent posterior variance as

σ2
i (t+ 1) =

[

1

σ2
i (t)

+
λi(t)

ν2

]−1

=

[

1

σ2
0

+

∑t
t′=1 λi(t

′)

ν2

]−1

(10)

As in [2], it can be shown that

Ey(T )

[

p
(c)
i (T )|Y (T − 1)

]

= p
(c)
i (T − 1) (11)

Thus, plugging into (8), the cost function can be re-written as

JT (λ) = E

[

N
∑

i=1

∑

c∈C

h(c)p
(c)
i (T )σ2

i (T )

]

= ν2E

[

N
∑

i=1

∑

c∈C

h(c)p
(c)
i (T − 1)

ν2/σ2
i (T − 1) + λi(T − 1)

]

= ν2E

[

N
∑

i=1

zi(T − 1)

ν2/σ2
i (T − 1) + λi(T − 1)

]

,

(12)

where

zi(T − 1) =
∑

c∈C

h(c)p
(c)
i (T − 1) (13)

1This is a result of assuming that the prior variances for each class are
equal, see Sec. II.

B. Global adaptive (GA) policy

As discussed in previous work on similar problems [2], it

is possible in principle to use dynamic programming (DP)

to optimize JT (λ) over λ given resource constraints (3).

However, for T > 2, the exact solution is computationally

intractable. Here we present a myopic method which indepen-

dently defines λ(t) for each t = 0, 1, 2, . . . , T − 1 as follows:

min
λ(t)

E

[

N
∑

i=1

zi(t)

ν2/σ2
i (t) + λi(t)

]

s.t.
N
∑

i=1

λi(t) = Λ(t). (14)

where Λ(t) is some fraction of the total budget Λ. Given Λ(t),
the optimal solution follows [2] and begins by defining π to be

an index permutation that sorts
√

zi(t)σ
2
i (t) in non-increasing

order:
√

zπ(1)(t)σ
2
π(1)(t) ≥ · · · ≥

√

zπ(N)(t)σ
2
π(N)(t). (15)

Let ci(t) = ν2/σ2
i (t) and define g(k) to be the monotonically

non-decreasing function of k = 0, . . . , N with g(0) = 0,

g(k) =
cπ(k+1)(t)

√

zπ(k+1)(t)

k
∑

i=1

√

zπ(i)(t)−
k

∑

i=1

cπ(i)(t), (16)

for k = 1, . . . , N − 1, and g(N) = ∞. Then the solution to

(14) is

λga
π(i)(t) =



Λ(t) +
k∗

∑

j=1

cπ(j)(t)





√

zπ(i)(t)
∑k∗

j=1

√

zπ(j)(t)
−cπ(i)(t),

(17)

for i = 1, . . . , k∗ and λga
i (t) = 0 else. The number of nonzero

components is determined by the interval (g(k − 1), g(k)]
to which the budget parameter Λ(t) belongs. Since g(k) is

monotonic, the mapping from Λ(t) to k∗ is well-defined. We

note that it is possible to optimize over the budget fractions

Λ(t) as in [2], but for simplicity we consider a fixed budget

Λ(t) = Λ/T for t = 1, 2, . . . , T .

C. Local adaptive (LA) policy

In some cases it may be impossible to deploy a sensor with

the agility to assign different resources to every location in the

scene at every stage t. Instead we consider the situation where

there are M local sensors (e.g. UAVs) that can explore a subset

of the locations with a fixed resource amount per sensor. At

each stage t = 0, 1, . . . , T − 1, define ui(t) ∈ {0, 1, . . . ,M}
as the number of sensors allocated to location i for i ∈ X ,
∑N

i=1 ui(t) = M , and u(t) = {ui(t)}
N
i=1. Then the LA

allocation problem becomes:

min
u(t)

E

[

N
∑

i=1

zi(t)

ν2/σ2
i (t) + λi(t)

]

s.t. λla
i (t) = ui(t)

Λ(t)

M
(18)
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for t = 0, 1, 2, . . . , T − 1. The solution is given by a series

of M steps, where at each step, we allocate a single sensor

to the location that provides the greatest decrease in the cost

function. First, set ûi(t) = 0 for i = 1, 2, . . . , N . Then, define

the decrease in cost by allocating a single additional sensor to

location i as

∆i(t) =
zi(t)

ν2/σ2
i (t) + ûi(t)Λ(t)/M

(19)

−
zi(t)

ν2/σ2
i (t) + (ûi(t) + 1)Λ(t)/M

. (20)

In each of M steps, we set ûi∗(t) ← ûi∗(t) + 1, where i∗ is

the index with the largest ∆i(t). Note that multiple sensors

are allowed to visit the same location.

The greedy allocation above is optimal for (18) because of

the convexity of the myopic cost with respect to each λi(t).
As a consequence, the decreases ∆i(t) at a particular location

diminish as more sensors are assigned to it, and we can be

sure that the assignment in each step yields the largest decrease

globally.

D. Global uniform/local adaptive (GU/LA) mixture policy

With no prior information on the location of targets in the

scene, the local policy is likely to perform poorly, because it

may take a long time to locate targets if only a small number

of positions can be queried in each stage. Thus, we consider a

third sensing modality where a global sensor is able to gather

low resolution information on target location by uniformly

observing the scene. Subsequently, local sensors can use this

information to measure the likely locations with higher signal

quality. In this policy, the optimization is two-fold: (a) the

percentage of resources used by the global exploration sensor

is optimized; and (b), the locations of the local sensors are

optimized. This optimization problem can be written as

min
Ts,{u(t)}T−1

t=0

JT (λ
gula) (21)

s.t. λgula
i (t;u(t), Ts) =

{

Λ(t)/N, t ≤ Ts

ui(t)Λ(t)/M, t > Ts

Given Ts, the optimization problem reduces to finding the

sensor allocations u(t) for t = Ts + 1, . . . , T − 1, which is

done myopically using steps in the Local Adaptive policy.

Optimization over Ts is done offline (i.e., before any real

measurements are taken) by approximating the expectation in

JT (λ) through Monte Carlo samples. In general, this requires

O(T ) Monte Carlo samples to determine the optimal Ts in a

T -stage policy.

IV. SIMULATION

This section presents a numerical study for comparing the

performance of proposed policies — global adaptive (GA),

local adaptive (LA), and global uniform/local adaptive mixture

(GU/LA), with two benchmark policies, the global uniform

(GU) that allocate resource uniformly everywhere and the

oracle policy that knows the target locations as a priori, and

a previously proposed policy ARAP [1,2], which is designed

to only detect targets and not classify them.

Simulation parameters are given in Table II unless otherwise

stated. In this scenario, there are very few targets in the scene

(5% on average), which leads to significant performance gaps

between the GU policy and adaptive policies. Moreover, the

condition that µ3 < µ2 is imposed to account for the fact

that high-importance targets are generally harder to detect than

low-importance targets. We set T = 10 for the GA policy

and T = 30 for the GU/LA and LA policies since the latter

two require additional stages to effectively search the entire

scene. The total budget is defined as a function of SNR: Λ =
10SNR/10N .

TABLE II: Simulation parameters

Parameter Value

Number of locations, N 2500
Number of classes, |C| 3
Class probabilities, {pc}c∈C

{0.95, 0.049, 0.001}
Class importance, {h(c)}c∈C

{0, 1, 2500}
Target prior means, {µc}c∈C

{0, 3, 1.5}
Target prior variances,

{

σ2
c

}

c∈C
{0, 1/16, 1/16}

Noise variance, ν2 1
Number of sensors for LA policy, M 400
Number of sensors for GU/LA policy, M 50

Figs. 2a and 2b explore the sensitivity of the GU/LA policy

to the percentage of total resources used by the global sensor,

Ts/T . In Fig. 2a, it is seen that there is significant performance

degradation when this percentage is close to either extreme.

When Ts = T (i.e., the GU policy), the lack of adaptivity leads

to inefficient resource allocation. Conversely, when Ts = 0
(i.e., the LA policy), the local sensors have difficulty in finding

the locations that contain valuable targets. Nevertheless, for

any fixed SNR, the gain of the GU/LA policy is relatively

flat in a region around the optimal Ts value. Circles indicate

the maximum Ts/T within 3 dB of the maximum gain, while

diamonds indicate the minimum Ts/T within 3 dB. It is seen

that for any SNR, there is a large region where the gain is

within 3 dB, which suggests that the GU/LA policy may be

robust to small errors in finding the optimal Ts. Fig. 2b shows

the optimal Ts values while varying both SNR and p3.

(a) JT (λ
u)/JT (λ

gula) (b) Optimal Ts vs. SNR and p3

Fig. 2: Sensitivity of GU/LA to Ts/T . In (a) For each SNR

value, the optimal percentage is given by black squares.

Circles and diamonds indicate the maximum/minimum Ts/T ,

respectively, where the gain is within 3 dB of the maximum.

There is significant degradation when Ts = 0 (i.e. the LA

policy) or Ts = T (i.e., the GU policy). (b) shows the optimal

Ts/T for the GU/LA policy while varying both SNR and p3.

Fig. 3 explores the benefit of including a global sensor by

comparing the GU/LA and LA policies. Figs. 3a and 3b show

the gains of the LA and GU/LA policies with respect to the GU

policy, while varying SNR and the number of local sensors. In

this simulation, the optimal Ts for the GU/LA policy is given

31



N
o
.
o
f
L
A

S
en

so
rs

SNR, dB

 

 

5 10 15 20
1

5

23

110

523

2500

−10

−5

0

5

10

15

20

25

(a) JT (λ
u)/JT (λ

la)

N
o
.
o
f
L
A

S
en

so
rs

SNR, dB

 

 

5 10 15 20
1

5

23

110

523

2500

−10

−5

0

5

10

15

20

25

(b) JT (λ
u)/JT (λ

gula)

Fig. 3: Benefit by including a global sensor. (a) and (b) show

the gains as a function of SNR and the number of local sensors.

For each SNR value, a black diamond indicates the smallest

number of sensors needed to achieve gains within 3 dB of the

maximum gain. Both policies have very good performance

when the number of local sensors is large. However, the LA

policy requires at least 100 sensors to acheive within-3dB

performance in most cases, and suffers large decreases in

performance when this condition is not satisfied. On the other

hand, the GU/LA policy requires many fewer sensors (on the

order of 10 sensors) to achieve within-3dB performance.

by the values in Fig. 2a. Black diamonds indicate the minimum

number of sensors needed to achieve within 3 dB of the

maximum gain at each SNR. Note that the maximum number

of sensors is equal to N = 2500 for both policies. However,

the LA policy requires at least 100 local sensors in almost

all cases to attain performance within 3 dB of the maximum,

while the GU/LA policy requires an order of magnitude fewer

sensors. Furthermore, a phase transition occurs for the LA

policy when fewer than 100 sensors are used, wherein the LA

policy actually performs worse than the GU policy.

The proposed policies approximately optimize an objective

function that combines estimation and classification errors.

However, the policies also perform well in reducing each of

these errors individually as demonstrated in the next figures.

Fig. 4 plots the posterior variance (i.e., expected estimation

error) within the low-value and high-value target classes. Fig. 5

shows the misclassification probabilities within each class. Fig.

5 also includes a bound on these probabilities in the asymptotic

case where Λ→∞.

It is seen that the GA, GU/LA, and LA policies all perform

similarly to the oracle policy in all of these metrics as SNR

improves. ARAP, which does not distinguish between high-

and low-value targets, performs better for low-value targets

and worse for high-value targets. Note that in these plots, the

GU/LA policy used only 50 local sensors in comparison to

the LA policy which used 400 local sensors. The GA policy

has slightly lower misclassification errors than the GU/LA and

LA policies for low SNR values (SNR < 10 dB).

In some cases, the ultimate goal of the mission is to use the

information obtained by the sensors in order to achieve some

objective. For example, this may include dropping payloads

for military purposes or for first-aid after natural disasters.

Moreover, it may be the case that there are only a limited
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Fig. 4: Posterior variance of low-importance and high-

importance targets. GU performs the worst as it does not adapt

resource allocation. The GA, LA, and GU/LA policies perform

better than ARAP over high-importance targets, but worse

on low-importance targets. Note that the LA policy uses 400

local sensors, while the GU/LA policy only uses 50 sensors

in addition to the GU sensor.
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Fig. 5: Misclassification probability as function of SNR and

policy. All adaptive policies perform significantly better than

GU and approach the performance of the oracle as SNR

gets large. Once again LA, GU/LA, and GA perform better

than ARAP in reducing misclassification errors for the high-

importance targets.

number of payloads available. While the goal of this paper is

not to optimize the expected return on these payloads, the

performance of the proposed policies as a function of the

number of payloads is easily simulated. Define the expected

return at location i as the posterior mean reward at the final

stage zi(T ), as defined by (13). Thus payloads are assigned

to the p locations with highest expected importance. Define w
as a sorting operator such that zw(1) ≥ · · · ≥ zw(N). Then the

total return with p payloads is

PT (p) =

p
∑

i=1

zw(i)(T ), (22)

Fig. 6 compares PT (p) as a function of p and policy with

SNR = 8 dB. The GA, GU/LA, and LA policies quickly

converge to the oracle policy, followed by ARAP. However

the LA policy requires 5 times more local sensors and has

larger signal estimation error than the GU/LA policy.

32



10
0

10
1

10
2

10
3

10
3

10
4

Number of payloads

E
x
p
ec
te
d
re
tu
rn

 

 

GU/LA

LA

GU

GA

ARAP

Oracle

Fig. 6: The expected return given by (22) as function of policy,

when there are a limited number of payloads. The GA policy

quickly approaches the oracle policy, followed by the GU/LA

and LA policies. The ARAP and GU policies have slower

convergence to the oracle policy return.

V. CONCLUSION

This paper generalized previous work on adaptive target

search to include value of information where targets have

heterogeneous mission importance. New polices are proposed

that are able to simultaneously locate, classify and estimate

a sparse number of targets embedded in a large space. We

also considered heterogeneous sensor models, which include

global uniform sensors, global adaptive sensors, and local

adaptive sensors. Simulation results show adaptive policies

provide significant performance gains over a uniform global

allocation policy. Moreover, a policy which combines global

and local sensors can yield comparable performance as that

with a global adaptive sensor, especially when SNR is low or

the number of payloads is small, but the local adaptive and

global uniform sensors tend to be cheaper and more practical

than a full-scale global adaptive sensor.

Future work will (a) compare and contrast this formu-

lation to one which directly optimizes the expected return

rather than our proposed objective function; (b) include time-

varying mission-value that will model stale information; and

(c) develop performance bounds and theoretical guarantees on

performance, such as lower/upper bounds on estimation error.
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