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Abstract—We consider the setting where we are given multiple
signal-plus-noise matrices. The signal matrices are modeled as
low-rank with the same factors (or eigenvectors) but arbitrary
(modulo a fixed ordering) eigen-SNRs. One motivating example
is the determination of community structure from multiple,
independent adjacency matrices. The objective is to combine
them linearly so that the eigenvectors of the resulting matrix
are as close as possible to the unknown, latent factors. We
utilize recent results from random matrix theory to recast this
as a constrained data-driven optimization problem and develop
an efficient algorithm (OptFuse) for solving it. We demonstrate
the improved performance of the algorithm relative to an equal
weighting scheme.

I. INTRODUCTION

Fusion of diverse information sources can potentially yield

significant detection and classification performance gains and

provide robustness relative to sensing using just a single

modality. There are significant unmet challenges to multi-

modal fusion in environments where the per-modality SNR

is low and time-varying. This is particularly so for time-

varying operating environments where the physically driven,

time-varying characteristics of the battlespace and/or jamming

by the adversary introduces distortion/interference such that at

various time instances, different modalities will have higher

SNRs and the identity of the modalities with better SNRs will

keep changing. The time-varying nature of the problem makes

computationally intense Bayesian schemes, e.g. POMDP or

multi-armed bandit sequential decisions, intractable. Simple

methods that average the statistics across the modalities will

not realize the performance or diversity gains expected of

multi-modal sensing systems.

The key idea that can be exploited is that signals of interest

or targets will occupy different low dimensional subspaces for

each modality the expressiveness of a modality depends on

the target signature for that modality (e.g. hyperspectral versus

EO/IR ). A combination of these probing multiple modalities

yields optimal detection or classification performance.

Spectral clustering is a powerful technique for classification

of such low dimensional signals encoded via large similarity

(or adjacency) matrices. Representative applications where

spectral learning has proven to be effective are community

detection [7], [11], [12], image segmentation [9], [10]. [5],

[6], [8].

In this work, motivated by such fusion problems. we con-

sider a setting where we are given q symmetric signal-pluse-

noise type matrices modeled as

X̃i = Xi + θiuu
H ,

where u is a latent signal eigenvector containing information,

and Xi’s are noise matrices. The objective is to derive the

best possible estimate of u using all the samples X̃i’s. Since,

eigenvectors are the principle objects in spectral learning,

improving the quality of eigenvectors can be expected to lead

to performance gains in detection, estimation and classification

based applications. Thus the primary technical challenge is

to automatically compute the weighting coefficient that is

to be assigned to each modality modalities with greater

informational content should receive a higher weight while

modalities with lower information content should receive a

lower weight or not be used at all.

The main contribution of our paper is the development

of a data driven algorithm, OptFuse for doing that exploits

the information content in the ‘noise-portion’ of the eigen-

distribution of the individual matrices. The algorithm also

gives us a proxy for the quality of estimation of the signal

eigenvector which could later on be used for comparison with

other techniques.

The paper is organized as follows: in Section II, we discuss

the linear fusion problem setup and discuss the special case of

Wigner matrices where we can derive the optimal coefficients

in closed form. In Section III, we extend our analysis using Ad-

ditive Free Convolution to propose our data driven algorithm

OptFuse for finding the optimal coefficients. In Section IV,

we show the results when our algorithm is applied to image

segmentation. We give concluding remarks where we propose

open questions and future directions of work in Section V.
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II. MODEL FOR WIGNER MODELED NOISE MATRICES

For i ∈ {1, . . . , q}, let

X̃i = Xi + θiuu
H , (1)

be N × N symmetric matrices, where u is an arbitrary

unit vector. For i ∈ {1 . . . , q}, Xi is a noise matrix with

independent diagonal entries having zero mean, variance 2/N
and independent off diagonal entries with zero mean, variance

1/N . The matrices Xi’s are themselves independent of each

other. θi are SNR parameters which may be positive or

negative.

For an arbitrary w ∈ R
k, define X̃ (w) :=

∑
wiX̃i and

X (w) :=
∑

wiXi. Let ũ(w) be the estimate of u obtained

from the eigenvalue decomposition of X̃.

We wish to solve the optimization problem,

wopt = arg max
w∈Rq,||w||1=1

|〈ũ(w),u〉|2 (2)

The objective function value of this problem gives a measure

of reliability of the estimate ũ(w).

Theorem 1. For the model given in (1), wopt defined in (2),

we have that,

wopti

a.s.−→ w̄opti
:=

θi∑
j θj

(3)

Proof. For an arbitrary w ∈ R
q the matrix X̃(w),

X̃(w) =

q∑

i=1

wiX̃i

=

(
q∑

i=1

wiθi

)

︸ ︷︷ ︸
wHθ

uuH +

q∑

i=1

wiXi

︸ ︷︷ ︸
X(w)

.

The entries of the matrix X(w) are independent because

each entry of X(w) is a linear combination of the entries

of the matrices Xi which are themselves independent. Also

the means and the variances of the entries of X(w) are given

by,

E(X(w)k,l) =
∑

wiE(Xk,l) = 0

E(X(w)
2
k,l) =

∑
w2

iE(X
2
k,l) =

{
‖w‖22 2

N
, if l = k,

‖w‖22 1
N
, if l 6= k

Therefore, the matrix X(w) is just a scaled wigner matrix

itself with a scaling factor of ‖w‖ and its spectral distribution

is just a scaled semicircular law.

Noting that all wigner matrices have the same semicircular

eigenvalue distribution, and using the result presented in

Example 3.1 of [1] on low rank perturbations of GOE matrices,

the cosine similarity between the observed eigenvector ũ(w)
and the vector u is given by,

|〈ũ(w),u〉|2 a.s.−→





1− ‖w‖22
(wHθ)2

, if |wHθ| > ‖w‖2
0, otherwise

(4)

To maximize the function given above, it suffices to max-

imize
(wHθ)2

‖w‖2 . By the Cauchy Schwarz Inequality, we have

that

(θHw)2 ≤ ‖w‖2‖θ‖2

‖w‖22
(wHθ)2

≥ 1

‖θ‖2 =⇒ 1− ‖w‖22
(wHθ)2

≤ 1− 1

‖θ‖2

with the equality holding whenever wi ∝ θi. By applying the

L1 normalization constraint , the cosine similarity between

ũ(w) and u attains a maxima when wi =
θi∑
j θj

.

Fig. 1: Optimal Coefficients wopt obtained from scanning vs

theoretical prediction w̄opt. In this experiment, two sample

matrices of rank one perturbations of GOE noise were taken.

The size of the matrices, N was varied. The second sample

SNR θ2 was fixed at 1. MATLAB’s fmincon (with random

initializations) was used to determine the global maximizer for

|〈ũ,u〉|2. The solid line represents our theoretical prediction

w̄opt.
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Let uopt denote u(w̄opt) and let uavg denote the estimate

of u obtained from equal weighted averaging of the matrices

samples. The following corollary quantifies the performance

gain obtained in using optimal coefficients as opposed to a

naı́ve equal weighted averaging scheme.

Corollary 1. For the model given in (8),and using the coeffi-

cients w̄opt as suggested in (3), the following holds,

|〈ũavg,u〉|2 a.s.−→





1− q
(

q∑
j=1

θj

)2 , if |
q∑

j=1

θj | >
√
q

0, otherwise

(5)

and

|〈ũopt,u〉|2 a.s.−→





1− 1(
q∑

j=1

θ2j

) , if
q∑

j=1

θ2j > 1

0, otherwise

(6)

In particular,

lim |〈ũavg,u〉|2 ≥ lim |〈ũopt,u〉|2 (7)

Proof. Using (4), plugging in w = w̄opt and w = 1
q
[1, . . . , 1],

we get the desired limiting values. To prove the inequality we

have to consider three cases:

• |
q∑

j=1

θj | >
√
q and

q∑
j=1

θ2j > 1,

• |
q∑

j=1

θj | <
√
q and

q∑
j=1

θ2j > 1

• |
q∑

j=1

θj | <
√
q and

q∑
j=1

θ2j < 1

In the first case, note that by the ”Arithmetic Mean≤
Quadratic Mean” inequality, we have that ,

(
q∑

j=1

θ2j

)

q
≥




q∑
j=1

θj

q




2

=⇒ 1− 1(
q∑

j=1

θ2j

) ≥ 1− q
(

q∑
j=1

θj

)2 .

In the second case, if |
q∑

j=1

θj | <
√
q and

q∑
j=1

θ2j > 1, then we

have that,

1− 1(
q∑

j=1

θ2j

) ≥ 0.

In the third case, the inequality holds trivially.

Another consequence of this corollary is that the phase

transition threshold associated with partial recovery for the

case of Wigner Matrices is ”lowered” i.e. the range of recov-

erable SNR’s (θi)
k
i=1 increases. In particular, we illustrate the

difference between the recoverable regions for our proposed

optimal set of coefficients versus equal weighted averaging.

Fig. 2: Theoretical plots for the recoverable regions for Opti-

mal Weighted Scheme vs Equal Weighted Scheme for a two

sample case. Note the increase in the partial recovery region.

The white region represents the set of parameters (θ1, θ2)
where the estimated eigenvector ũ(w) is orthogonal to u.

Fig. 3: Simulations illustrating the inner Product Squared of

the recovered eigenvector estimate with the original eigen-

vector for Equal Weighted Averaging vs Optimal Weighted

Averaging. In this experiment, we took three sample matrices

os size 1000×1000 of rank one perturbations of GOE matrices.

Two SNR parameters θ2 and θ3 were fixed at 1 and 1.4. The

solid lines represent the theoretical predictions.

III. OPTFUSE: A DATA-DRIVEN FUSION ALGORITHM

The results in the previous section make a strong assumption

that the noise-only random matrix is Wigner distributed.

We now derive a data-driven fusion algorithm that relaxes

the assumption on the noise-only matrices. To that end, for

i ∈ {1, . . . , q}, we model the symmetric signal-plus-noise
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matrices as

X̃i = Xi + θiuu
H , (8)

be N × N symmetric matrices, where u is a unit vector

chosen uniformly at random. For i ∈ {1 . . . , q}, Xi has Haar

invariant eigenvectors and its eigenvalues are drawn from the

compact real measures µi. The matrices Xi’s are assumed to

be independent of each other. The matrix X(w) and the vector

ũ(w) are defined as before.

It is desired to solve the same optimization problem (2) in this

general setting. We propose an efficient optimization routine

to solve for the problem of finding limiting values of the w̄opt.

Alternative Formulation:

Since each eigenvalue of X(w) is a function of the

matrices {Xi : i = 1, . . . , q}, the law of eigenvalues X(w)
itself is a function of {µi : i = 1, . . . , q. Let the limiting

spectral distribution of X(w) be µw. Also let θ(w) = θHw.

The following theorem asserts that the optimization problem

2 can be reformulated in terms of only the limiting spectral

measure of the matrix X(w).

Theorem 2. For w ∈ R
q , the following holds ,

|〈ũ(w),u〉|2 a.s.−→ − 1

θ(w)2
G−1′

µw

(
1

θ(w)

)
(9)

where Gµ(.) is the Cauchy Transform of the distribution µ i.e.

Gµ(z) =

∫
dµ(x)

z − x

, if effective SNR satisfies ,

θ(w) > lim
h↓0

1

GµW
(b+ h)

or

θ(w) < lim
h↓0

1

GµW
(a− h)

, where b = sup supp(µw) a = inf supp(µw).

Proof. Using Theorem 2.2 of [1], and using the fact that u

is chosen uniformly at random from the unit sphere, we have

that

|〈ũ(w),u〉|2 a.s.−→ −1
θ(w)2G′

µw

(
G−1

µw

(
1

θ(w)

)) (10)

=− 1

θ(w)2
G−1′

µw

(
1

θ(w)

)
(11)

Using (9), we can assert that the limiting value of the

objective function evaluated at w is a function of the limiting

spectral distribution of the matrix X(w). Hence, the following

optimization problem can be used as a proxy instead of (2),

wopt = arg max
w∈Rq,||w||1=1

− 1

θ(w)2
G−1′

µw

(
1

θ(w)

)
(12)

It should be noted that by using the assumption that u is

drawn from a uniform distribution, we have eliminated any

explicit dependence on the vector u. This means that even

though we do not explicitly know the true underlying vector

u, we still get a measure of reliability for our estimate.

The next theorem gives us a method to compute the func-

tion − 1

θ(w)2
G−1′

µw

(
1

θ(w)

)
without explicitly evaluating the

limiting eigenvalue measure of the matrix X(w).

Theorem 3. For w ∈ R
q and for z ∈ R, the following holds

,

−z2G−1′

µw
(z) =

(
q∑

i=1

− (wiz)
2
G−1′

µi
(wiz)

)
− q + 1 (13)

Proof. Using the free additive convolution identity, ( [2] , [3],

[4]), we have that the limiting law of the matrix X(w) is given

by

µw = w1µ1 ⊞ · · ·⊞wqµq

=⇒ Rw(z) =

q∑

i=1

Rwiµi
(z)

=

q∑

i=1

wiRµi
(wiz).

where wiµi is the limiting spectral distribution of wiXi and

Rµ(z) = G−1
µ (z)− 1

z
is the R transform of the distribution µ.

G−1
µw

(z)− 1

z
=

q∑

i=1

(
wiG

−1
µi

(wiz)−
1

z

)

(14)

Taking derivatives w.r.t z we get ,

G−1′

µw
(z) +

1

z2
=

q∑

i=1

(
wi

2G−1′

µi
(wiz) +

1

z2

)

−z2G−1′

µw
(z) = −

(
q∑

i=1

(wiz)
2G−1′

µi
(wiz)

)
− q + 1

(15)

which gives the desired result.

Corollary 2. For w ∈ R
q , the following holds ,

|〈ũ(w),u〉|2 a.s.−→−
(

q∑

i=1

(
wi

θ(w)

)2

G−1′

µi

(
wi

θ(w)

))
− q + 1

(16)

where Gµ(.) is the Cauchy Transform of the distribution µ, if

each sample SNR obeys

θi > lim
h↓0

1

Gµi
(bi + h)

or

θi < lim
h↓0

1

Gµi
(ai − h)
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, where bi = sup supp(µi) ai = inf supp(µi).

Proof. This is a direct consequence of (16) and (9), y replacing

z =
1

θ(w)
.

In (16), we have assumed that each sample should itself

be above phase transition. This requirement ensures that

convex combination of samples themselves will be above

phase transition. The algorithm OptFuse (described in 3),

also requires this technicality so that the parameter estimation

for θi’s is accurate. The necessity of this requirement will be

demonstrated later on in simulations in section III.

We propose the optimization of the following objective

function as an alternative to (12),

wopt = arg max
w∈Rq,||w||1=1

−
(

q∑

i=1

(
wi

θ(w)

)2

G−1′

µi

(
wi

θ(w)

))

(17)

The objective function is itself only a function of the individual

limiting noise spectral measures, µi’s. The objective function

itself only depends on the measures µi’s through Gµ(.)
and the function Gµi

(.) for each i ∈ {1, . . . , q}, could be

approximated from the spectra of X̃i.

This result (16) is useful because any iterative scheme for

maximization will require a module for computation of the

function −z2G−1′

µw
(z). This result gives an explicit method

for evaluating the objective function without computing µw at

each iteration. Instead, the spectrum of each sample Xi can

be precomputed.

For Λ ∈ R
N define, ĜΛ(z) =

1

N

N∑
i=1

1

(z −Λi)
.

Algorithm 1 : For finding Ĝ−1
Λ (z)

Require: Λ ∈ R
N , z ∈ R

Compute x such that

1

N

N∑

1

1

x−Λi

= z

return x = Ĝ−1
Λ (z).

Algorithm 2 : For finding Ĝ′
Λ(z)

Require: Λ ∈ R
N , z ∈ R

Compute

− 1

N

N∑

1

1

(z −Λi)2
.

Since the objective function is not guaranteed to be concave,

we used a multiple iterate random initialization based gradient

descent routine using MATLAB’s fmincon.

IV. SIMULATIONS

For benchmarking the performance of OptFuse, we consid-

ered the same experimental setup as before. We illustrate the

cosine similarity squared between the estimated eigenvector

ũ and u. We also compare the optimal linear coefficients

obtained from OptFuse with w̄opt.

Fig. 4: Simulations illustrating the inner Product Squared of

the recovered eigenvector estimate with the original eigenvec-

tor for OptFuse. In this experiment, we took three sample

matrices of size 1000×1000 of rank one perturbations of GOE

matrices. Two SNR parameters θ2 and θ3 were fixed at 1 and

1.4. The solid lines represent the theoretical predictions. Note

that for each sample the phase transition occurs at θc = 1. We

can see that OptFuse is able to predict the cosine similarity

between ũ and u accurately.

Fig. 5: Simulations illustrating the linear coefficients maximiz-

ing the inner Product Squared of the recovered eigenvector

estimate with the original eigenvector for OptFuse. In this ex-

periment, we took three sample matrices os size 1000×1000 of

rank one perturbations of GOE matrices. Two SNR parameters

θ2 and θ3 were fixed at 1 and 1.4. The solid lines represent

the theoretical predictions. We can see that OptFuse is able to

predict the coefficients predicting cosine similarity between ũ

and u accurately.
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Algorithm 3 : OptFuse for estimating the jth signal eigenvector

Require: k independent {X̃i}ki=1 signal-plus-noise matrices and the rank of perturbation, r
for i = 1, . . . , k do

Λi ←− EIG
(
X̃i

)
, spectral decompostion of samples.

Σ̂i ←− Λi(r + 1 : N), approximate noise spectra.

θ̂ij ←−
1

Ĝ
Σ̂i

(Λi(j))
, estimate of the SNR parameters for each sample.

end for

wj
opt ←− arg maxw


−

q∑
i=1

(
wi

θ̂w

)2
1

Ĝ′
Σi

(
Ĝ−1′

Σ̂i

(
wi

θ̂w

))


− q + 1 with θ̂w =

q∑
i=1

wiθ̂
i
j , w

T1 = 1, w � 0, using 1 and 2

return Optimal Linear Combining Coefficients wj for estimating the jth signal eigenvector.

V. CONCLUSION

We considered a problem where we are given multiple

similarity matrices and the objective is to find an optimal

linear weighting of them so that the weighted sum has the

most accurate eigenvectors. We utilized recent results from

random matrix theory to recast this as a constrained data-

driven optimization problem and developed an efficient algo-

rithm (OptFuse) for solving it. We demonstrated the improved

performance of the algorithm relative to an equal weighting

scheme.

The objective function for the 3 is provably concave for certain

distributions (eg. Wigner Semicircular Law). However , it still

is an open question to prove the concavity of the objective

function for any arbitrary set of spectral noise measures.

In case the concavity is established for any general noise

distritbution, convex optimization routines could be leveraged

in the algorithm to make it more efficient.
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Fig. 6: Image segmentation application on an image taken from the MSR Object Classification dataset. The leftmost image is a

original image resized by a factor of 1/8. From this image a dissimilarity matrix was made using the squared euclidean metric

using each one of the R,G and B layers. We added a symmetric GOE noise to each matrix with scaling 10. The objective

is to classify the cow objects in the original image using these three dissimilarity matrices. The eigenvalue decomposition of

each layer showed that each layer has three outliers in the spectrum. Hence, we used OptFuse to extract the best possible

estimate of the eigenvectors of the perturbation. These estimated were later used for finding the clusters in the image using

kmeans based clustering. The coefficients were w1
opt = [0.4192 ,−0.0072 , 0.5736], w2

opt = [−0.0301 , 0.9560 ,−0.0139] and

w3
opt = [0.3512 , 0.3756 , 0.2732]
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