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Abstract—Crowdsourcing provides a cheap but efficient
approach for large-scale data and information collection.
However, human judgments are inherently noisy, ambigu-
ous and sometimes biased, and should be calibrated by
additional (usually much more expensive) expert or true
labels. In this work, we study the optimal allocation of the
true labels to best calibrate the crowdsourced labels. We
frame the problem as a submodular optimization, and pro-
pose a greedy allocation strategy that exhibits an interesting
trade-off between a local effect, which encourages acquiring
true labels for the most uncertain items, and a global effect,
which favors the true labels of the most “influential” items,
whose information can propagate to help the prediction of
other items. We show that exploiting and monitoring the
global effect yields a significantly better selection strategy,
and also provides potentially valuable information for other
tasks such as designing stopping rules.

I. INTRODUCTION

Crowdsourcing has emerged as a powerful approach

for collecting data and information at large scales. The

idea is to outsource tasks that are easy for humans but

difficult for machines, sending them to online “crowd”

workers who are given a relatively small monetary

incentive. Crowdsourcing has been widely used in many

application and scientific domains, including machine

learning, human-computer interaction and social fore-

casting, to name only a few.

A major challenge in crowdsourcing is quality control.

The (often anonymous) crowd workers have unknown

and highly diverse levels of expertise, making it a critical

problem to evaluate workers’ performance and optimally

combine their labels. In addition, human judgments are

inherently noisy, often with significant individual biases;

this is especially common in the estimates of continuous

quantities, such as probabilities, product prices, and point

spreads in sports, where people tend to give under- or

over-estimates based on their personal experience. In

these cases, it is necessary to calibrate the crowdsourcing

results by incorporating some ground truth information

or accurate labels from domain experts.

Because the expert or true labels are often much more

expensive than the labels from the crowd, this raises

an important problem of understanding the values of

these valuable resources and hence making optimal use

of them. In this work, we study the optimal allocation

of the true labels to best calibrate the crowd labels for

estimating continuous quantities. We frame the problem

into a minimization of a conditional variance criterion,

and establish its monotonic submodularity, enabling ef-

ficient approximation via greedy selection. We observe

that our greedy selection rule decomposes into two terms

that reflect a trade-off between a local effect and a global

effect, where the local effect encourages acquiring true

labels from the most uncertain items, which improve

the performance in a local, myopic fashion, while the

global effect favors the most “influential” items, whose

true labels provide valuable information for decreasing

the uncertainty on their associated workers’ performance,

and significantly improve the prediction of all the other

items via a snowball effect. We show that it is critical

to consider the global effect when allocating the true

labels, especially in the initial stage when the number of

acquired true labels is small, and the uncertainty on the

workers’ performance is relatively large.

The remainder of the paper is organized as follows.

Section I-A discusses related work. Sections II, III and

IV frame the optimization problem and establish its

submodularity. Due to the intractability of the objective

function, a Laplace approximation is used (Section III).

Section V derives a greedy update rule and discusses the

related concepts of global and local effects. We present

our experimental results in Section VI and conclude the

paper in Section VII.

A. Related Works

Some aspects of the value of ground truth information

in crowdsourcing were recently studied in [1], which

uses a set of control items with pre-labeled true answers,
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and confidentially “seeds” them into workers’ task sets to

evaluate workers’ performance and correct their biases.

[1] studied the problem of determining the optimal

number of control items to minimize the error rate, while

assuming the control items are randomly assigned to

the workers. Our setting is significantly different: we

assume the true labels are acquired after the crowd labels

are collected, providing the flexibility to optimize the

assignments of the true labels to improve performance.

There exists a large body of literature on probabilistic

modeling in crowdsourcing (e.g., [2], [3], [4], [5], [6]),

which are able to jointly estimate workers’ reliabilities

and the item labels without any ground truth information.

See also, for example, [7], [8], [6] for related theoretical

discussions. However, these methods mostly work on

discrete (such as binary) labeling problems, on which

it is reasonable to make the assumption that the ma-

jority of workers (overall) will be correct. Our work

focuses on crowdsourcing for continuous quantities, for

which incorporating ground truth information is much

more critical due to the inherent bias effects in human

judgments.

There also exists a large body of work on optimal

source allocation and online decision making in crowd-

sourcing (see e.g., [9], [10] and references therein); these

works mostly focus on optimal assignments between the

crowd workers and items, which differs from our setting

of adding and allocating ground truth information to

calibrate and improve the crowdsourced labels.

II. PROBLEM SETTING

Assume we have a set of items (or questions) I = {i},

each of which has a continuous quantity µi with an

unknown true value of µ∗
i that we want to estimate

(e.g., price, point spreads, GDP). Let J = {j} be a

set of crowd workers that we hire to estimate {µi}. Let

G = (I, J, E) be the bipartite assignment graph between

the workers and items, that is, (ij) ∈ E iff the jth

worker answers the ith item. For (ij) ∈ E, let xij be

the estimate of µi given by the jth worker.

We assume the workers’ labels are generated by a

model p(xij |µi, νj), where in addition to µi, we have

a parameter νj for each worker j, characterizing her

expertise, bias, or any other relevant features. In this

work, we assume {xij} are generated by

xij = µi + bj + σjξij , ξij ∼ N (0, 1), (1)

where νj = {bj , σj} with bj denoting the bias and σ2
j

the variance of the jth worker, respectively.

Note that the biases {bj} are not identifiable solely

from the crowdsourced labels {xij}, and should be

calibrated using additional expert or ground truth infor-

mation. To be specific, we assume we have the option

of checking the true labels of a set of items C ⊆ I
of size |C| = K after the crowdsourcing labels {xij}
are collected. Our goal is to find the best set C such that

the prediction error on the remaining items is minimized;

using Bayesian inference, this is framed as

min
C : |C|≤K

{

E(var(µ¬C |X,µC) | X) (2)

≡

∫

∑

i∈¬C

[

µi − E(µi|X,µC)
]2
p(µ | X)dµdν

}

where ¬C = I \ C; this corresponds to minimizing the

mean square error (MSE) when predicting the vector µ,

and is known as A-optimality (“average” or trace) in the

experiment design literature (e.g., [11]).

Another common objective is the conditional entropy

min
C : |C|≤K

H(µ¬C |X,µC), (3)

which is equivalent to maximizing the marginal entropy

H(µC |X). However, as we show later, the entropy

objective (3) gives a myopic selection strategy, and per-

forms significantly worse than the conditional variance

objective.

III. LAPLACE APPROXIMATION

The posterior p(µ|X) is generally non-Gaussian, mak-

ing it difficult to even evaluate the objective function in

(2). We address this problem using a Laplace approxi-

mation. To be specific, we calculate the posterior mode

[µ̂, ν̂] = argmax
[µ,ν]

log p(µ, ν|X),

and approximate the posterior by a normal distribution,

p(µ, ν|X) ≈ N ([µ̂, ν̂], H−1),

where H is the negative Hessian matrix of the log-

likelihood evaluated at [µ̂, ν̂], that is,

[

Hµµ Hµν

Hνµ Hνν

]

= −







∂2 log p(µ, ν|X)
∂µ2

∂2 log p(µ, ν|X)
∂µ∂ν

∂2 log p(µ, ν|X)
∂ν∂µ

∂2 log p(µ, ν|X)
∂ν2






.

Marginalizing over ν, we obtain

p(µ|X) ≈ N (µ̂, Q−1), where Q = Hµµ −HµνH
−1
νν Hνµ,

and hence the value of the conditional variance,

var(µ¬C |X,µC) ≈ tr(Q[¬C]−1), ∀µC ∈ R
|C|,
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where Q[¬C] is the submatrix of Q formed by the rows

and columns in subset C. Correspondingly, the minimum

conditional variance problem in (2) is approximated by

max
C : |C|≤K

{

fQ(C) ≡ −tr(Q[¬C]−1)
}

, (4)

which is completely determined by the matrix Q.

IV. SUBMODULARITY AND GREEDY SELECTION

The subset selection problem in (4) is still intractable.

In this section, we establish the submodularity and

monotonicity of fQ(C), allowing efficient approximation

by a greedy algorithm. Interestingly, we remark that

fQ(C) is not always submodular for general semi-

definite matrices Q, but is always submodular for the

Q in our problem once the model p(x|µ, ν) is not ill-

posed (i.e., the negative Hessian H is positive definite).

Our results are summarized as follows.

Proposition IV.1. (1). For any positive semi-definite

(PSD) matrix Q, the fQ(C) in (4) is non-decreasing,

that is, fQ(C) ≥ fQ(C
′) if C ′ ⊆ C.

(2). If Q is PSD and Qij ≤ 0 for i 6= j (i.e., it is

a Stieltjes matrix, equivalently a symmetric M-matrix),

then Σ = Q−1 is element-wise nonnegative, and fQ(C)
is a submodular function.

(3). For Q = Hµµ − HµνH
−1
νν Hνµ as used in our

model, fQ(C) is submodular if H is positive semi-

definite and Hνν is non-singular.

Proof. (1) is an immediate result of the monotonicity of

conditional variance, i.e., var(Y ) ≥ E[var(Y |Y ′)]. (2)

follows a more general result in Theorem 3 by [12]. For

(3), we just need to note that Hµµ is a diagonal matrix,

and hence Qij = −HµiνH
−1
νν Hνµj

≤ 0, ∀i 6= j.

Remark 1. Proposition IV.1(2) suggests that fQ(C) is

sub-modular if {µi} are non-negatively correlated with

each other. Intuitively, this means that the prediction of

µi should not hurt that of the others; more specifically,

an improvement on predicting µi (corresponding to a

decrease of the residual µi − µ∗) does not hurt the

prediction of µi′ for i 6= i′. Similar conditions for the

submodularity of conditional variance-type objectives

have been discussed by, for example, [13], [14], [15],

in which similar suppressor-free conditions are derived.

Remark 2. The condition in Proposition IV.1(2) is a

necessary one, as illustrated by the following counterex-

ample by [12]:

Q =





5 −12 9
−12 33 −24
9 −24 19



 ,

Items

Workers

Fig. 1. Illustration of the local and global effects. Red circled: a very
uncertain item (since answered by only one worker), whose true label
has a large local effect (decreasing its own error), but a small global
effect (in helping the prediction of the other items). Blue Circled:
the most “influential” item (answered by many workers), whose true
label has a large global effect (via propagating information through the
workers associated with it and helping predict the other items), but a
small local effect (since it is already relatively accurate).

where one can check that Q is positive definite but

fQ(C) is not submodular.

V. LOCAL VS. GLOBAL EFFECTS

The monotonicity and submodularity of fQ(C) guar-

antee a (1 − 1/e) approximation using a greedy algo-

rithm. In this section, we derive the greedy update for (4)

and show that it reflects an important trade-off between

two effects: a local effect that encourages us to select the

most uncertain items, and a global effect that encourages

us to select the most “influential” items – those that can

significantly help the predictions of other items.

Proposition V.1. Let Σ = {σij} = Q[¬C]−1, then for

any i /∈ C, we have

fQ(C ∪ {i})− fQ(C) = σii +

∑

k 6=i σ
2
ik

σii

.

Therefore, the optimal i∗ for the greedy selection is

i∗ = argmax
i

{σii +

∑

k 6=i σ
2
ik

σii

}

= argmax
i

{σii +
∑

k 6=i

ρ2ikσkk}, (5)

where ρik = σik√
σiiσkk

is the correlation between i and j.

The selection criterion (σii +
∑

k 6=i ρ
2
ikσkk) gives

an intuitive interpretation: the first term σii counts the

uncertainty of the ith item itself (a local effect), while the

second term
∑

k 6=i ρ
2
ikσkk assesses how much it would

help in estimating other items if the true label of the ith
item were acquired (a global effect). The second term

will be large if the ith item has strong correlations with

other difficult (high variance) items, and hence can help

reduce their errors. This reflects a “propagation effect”,

that knowing the true labels of the ith item helps improve

the estimates of the parameters {νj : (ij) ∈ E} for
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workers that answered the ith item, which then helps

improve the estimates of the other items answered by

that set of workers; this information can then propagate

on to more items, yielding a snowball effect.

The local and global effects are illustrated in the small

graph shown in Figure 1. Assuming all the workers

perform equally well, then the items labeled by the

smallest number of workers (e.g., the one circled by red)

are most uncertain, and have large σii. On the other hand,

the item labeled by the largest number of workers (blue

circled) is more accurate itself (i.e., small σii), but is

most “influential” in that checking its answer can help

evaluate the parameters of all the workers, and hence

improve the estimates of all the other items. In this toy

example, the different scores of the items are caused by

their different degrees in the graph; in practice, items

with the same degree may also have different scores

if they are connected to workers that have different

(posterior) parameter uncertainties.

Interestingly, as we demonstrate in our experiment in

Section VI, the local and global effects dominate at dif-

ferent stages of the selection process. When the number

of true labels acquired is small, the uncertainty on the

workers’ parameters (e.g., biases and variances) may be

large, and one should select the most “influential” items

to better evaluate the workers’ parameters, exploiting

the global effect. As more true labels are acquired, the

uncertainty on the workers’ parameters decreases, and

the benefit of the global effects saturates; at this point,

one should select the most uncertain items to exploit

their local rewards.

The relative significance of the local vs. global effects

can be quantified by the ratio of the two terms in (5),

γ =

∑

k 6=i ρ
2
ikσkk

σii

, (6)

which can be treated as a type of value of information

(VOI) in the true labels to be acquired. Monitoring the

ratio γ may also provide valuable guidance for designing

optimal stopping rules or even more adaptive systems.

For example, we may consider ceasing to collect more

(expensive) true labels as the local effect begins to dom-

inate (small γ), since the true labels will then essentially

affect only the single item for which they are acquired,

and may not be worth their cost. In addition, in this

case, one may consider taking action to acquire more

inexpensive labels from new crowd workers, which then

makes the global effect return, making true labels more

useful again. This provides a promising direction for

constructing adaptive systems that automatically switch

between crowd and expert labels and optimally trade off

reliability and cost.

A. Entropy vs. Conditional Variance

An alternative item selection criterion is the con-

ditional entropy shown in (3), which also yields a

monotonic submodular optimization. However, a similar

derivation shows that it corresponds to a more “myopic”

greedy update of the form

i∗ = argmax
i

{σii}, (7)

which always selects the most uncertain item (local

effect), while ignoring global effects. A similar myopic

property of the entropy criterion was discussed in [16]

for sensor network deployment, where they found that

the entropy maximization tends to select the sensors at

the border of the sensing field (which are locally most

uncertain), leading to wasted sensing resources.

VI. EXPERIMENTS

We illustrate our selection algorithms and the local vs.

global effects on both simulated and real world datasets.

We focus on a online setting throughout our experiments,

where we update the Hessian matrix based on all the

currently available information each time before we

select and acquire a true label. This is tractable and

should always be recommended in practice, since the

updated Hessian provides a more accurate estimation,

and is fast and cheap compared to the cost of acquiring

true labels. Given the acquired true labels, we predict the

remaining items using the posterior mode, and evaluate

the result using the mean square error (MSE) w.r.t. the

true values of the remaining items.

We compare the selection rule in (5) that includes both

local and global effects (called Local+Global), with

the more myopic selection rule in (7) that measures only

the local effects (Local). We also implement a random

selection rule where a random item is selected uniformly

at each time (Random). We initialize all the selection

rules with a common first item that has the largest degree

in the assignment graph.

We start with a simulated dataset with 100 items

and 100 workers, whose assignments are defined by a

Bernoulli random bipartite graph in which each edge

appears with probability 0.1, so that each item is labeled

by 10 workers on average. We simulate the labels {xij}
according to the model in (1), where the true answers µi

and the workers’ biases bj are drawn i.i.d. from standard

normal distribution, and the workers’ variances {σj}

12



(a) Avg MSE on remaining items (b) Ratio of global vs. local effects (c) Disagreement (Local+Global vs. Local)
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Fig. 2. Results on the simulated data. (a) The average MSE on the remaining items as the number of true labels increases; the monotonic
decreasing of the average MSE is an indication of the “propagation” effect. (b) The ratio γ of the global and local effects as defined in (6). (c)
The disagreement on the selected items between the Local+Global and Local rules.

(a) Avg MSE on remaining items (b) Ratio of global vs. local effects (c) Disagreement (Local+Global vs. Local)
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Fig. 3. Results on the real world dataset. The settings are the same as that in Fig 2.

are generated from an inverse Gamma distribution Inv-

Gamma(1, 1). The results are averaged over 100 random

trials.

Fig 2 reports our results on the simulated data. Fig 2(a)

shows that the average MSE on the remaining items

decreases monotonically as we acquire more true labels;

this is due to the global effect in which the true labels

help evaluate the workers’ parameters, and hence the

prediction on the remaining items. We find that the

Local+Global selection rule performs the best in

terms of decreasing the MSE with a small number of

true labels, while Local is even worse than Random,

due to its myopic property.

In Fig 2(b), we show the ratio γ of the global and the

local effects defined in (6) as we increase the number

of true labels acquired by the Local+Global rule. As

shown in Fig 2(b), γ starts at very high values when the

number of true labels is small (corresponding to high

global effect), but quickly reduces to small values as the

number of true labels increases (corresponding to high

local effect).

To assess the difference between the items selected

by the Local+Global and the Local rules, we walk

through the items selected by Local+Global sequen-

tially, and calculate the next items returned by both

Local+Global and Local. We then plot in Fig 2(c)

the percentage of disagreement (across the 100 random

trials) between Local+Global and Local. We find

that the disagreement follows a similar trend to the ratio

γ in Fig 2(b): it starts with 100% disagreement indicating

that Local+Global and Local select completely

different sets of items, and then switches to relatively

low values as we increase the number of true labels,

indicating that the difference between Local+Global

and Local vanishes, due to the saturation of the prop-

agation (global) effect.

We perform further experiments on a real world

dataset collected by [17]. This dataset contains age esti-

mates of 1002 face images given by 165 crowd workers

on Amazon Mechanical Turk. We construct 100 random

trials obtained by subsampling 500 images (items), and

perform the same experiment as the simulated data. The

results are shown in Fig 3(a)-(c), in which we observe a

similar trend as in simulated data: the Local+Global
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rule gives the best average MSE, and both the ratio γ and

the disagreement between Local+Global and Local

admit a similar transition from high values to low values.

VII. CONCLUSION

In this work, we study the optimal allocation of the

true labels to best calibrate the crowdsourcing results

for estimating continuous quantities. An important trade-

off between a local effect and a global effect is dis-

cussed, and demonstrated to be critical for efficient and

effective allocation of the true labels. Our observations

provide critical insights for understanding the value of

information of the true labels, raising the potential to

make better use of both the (expensive) true labels and

(inexpensive) crowd labels, and design more adaptive

systems that could yield significantly better results.
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