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Abstract—We are interested in information planning of struc-
tures represented by sparse graphical models where measure-
ments correspond to a limited number of nodes. Choosing a set of
measurements, which better describe spatiotemporal phenomena
is a fundamental task whose optimal solution becomes intractable
as the number of measurements grows. Krause et al. (2005)
and Williams et al. (2007) have shown that by exploiting the
submodular property of mutual information, a simple polynomial
greedy selection algorithm comes with near-optimal guarantees.
Most previous works assume oracle value models, where the value
of a set of measurements is provided in constant time. However,
the complexity of evaluating the reward of different measurement
sets might be nontrivial in realistic settings. Here, we show that
by taking advantage of sparsity in the measurement process,
the complexity of information planning in Gaussian models is
dramatically reduced. We additionally demonstrate that working
with the information form reduces the computational load to the
absolutely necessary computations. Lastly, we present an analysis
of the computational complexity of different orders of selecting
measurements known as visit walks, and suggest how this could
help in forming a measurement schedule. We restrict ourselves to
Gaussian Hidden Markov Models (HMMs), but the underlying
analysis generalizes to general Markov Random Fields (MRFs).

I. INTRODUCTION

The idea of using information measures as a reward function

for Bayesian experimental design, active inference being a

special case, is a well-studied problem. Early analysis includes

Lindley (1956) [1], which considers an alternative to the clas-

sic work of Blackwell (1950) on comparisons of experiments

[2], and that of Bernardo (1979) which extends the concepts to

a more principled setting [3]. The relations of such measures

to risk have also been studied extensively. See [4] for a review

and [5], [6] on relations to surrogate loss functions. Work

in [7]–[10] considers their use in the setting of sequential

inference subject to resource constraints on measurements.

In the sequential setting, complexity issues arise when plan-

ning multiple time-steps ahead. Specifically, the complexity

of active planning methods is combinatorial in the number

of sensing actions and exponential in the planning horizon.

Krause et al. (2005) observed that a commonly utilized choice

of information measure, mutual information (MI), is submod-

ular [11] when the measurements are statistically independent

conditioned on the quantity of interest [12]. As such, the

results of Nemhauser et al. (1978) [13] apply and tractable

greedy selection methods are guaranteed to be within a factor

of the optimal (though, intractable) selection. The analysis of

Williams et al. (2007) [14] provides guarantees for greedy

selection for the more general case of inference in graphical

models when measurements are divided into subsets with local

constraints on subset selection and when the latent variable

structure may not be fully specified a priori (e.g., inference

in Markov chains for streaming data). It is important to

emphasize that this analysis is about the basis for planning

the sensing actions. Inference proceeds after having selected

a plan. Consequently, a first step is to evaluate the reward of

the prospective plan.

An important, often neglected, aspect of information-based

approaches, however, is the computational cost of evaluating

a given plan. While the bounds for greedy selection hold

for any plan subject to the same constraints, one is free to

reorder the sequence in which subsets are considered. Some

reorderings have significantly higher information rewards than

others. A simple example occurs in a Markov chain where

at each node one may choose k out of N measurements. A

naı̈ve plan considers each node in order (greedily selecting k
out of N available measurements at each node). Alternatively,

one may consider nodes in random order selecting a single

measurement (from those that have not already been selected),

but ensuring each node is considered k times. Evaluating

the information reward of the naı̈ve plan has significantly

lower computational complexity than the random plan, but the

random plan will often have significantly higher information

reward. Thus, there is motivation to expend computational

resources for exploring multiple plans subject to the same

constraints. Furthermore, when exploring multiple plans, the

plan with lowest reward provides the lowest upper bound on

the optimal plan yielding a tighter performance guarantee as

compared to the greedy plan with highest reward.

Here, we consider the computational complexity of evalu-

ating information rewards for measurement selection in Gaus-

sian models. In such models, complexity depends on the

number of latent variables, the number of measurements to

be explored and the visitation order. We show speedups up

to a thousand times by taking advantage of sparsity in the

measurement process without changing the outcome of the

greedy algorithm. In addition, we demonstrate that by working

with the information form of Gaussian, we can provide the suf-

ficient statistics at every step with much reduced computation.

We achieve that by deploying a variant of belief propagation

that is more suitable for adaptive inference settings. The results

of the later technique are exact for Markov chains, trees, and

poly-trees. This analysis is particularly useful for large-scale

models, since the evaluation of information rewards poses a
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Fig. 1. Sparsity and different walks. (a) Each measurement of Xk depends
only on a few components of Xk . Dashed rectangles represent vectors
of variables at a point, Xk,Xk+1. (b) This structure can be collectively
represented as an HMM. Two walks, that is, orders in which observation sets
are visited, are visualized. A forward walk represented with dashed arrows,
and another walk represented with dotted arrows. Arrows with a circle in one
end denote the beginning of the walk. Different walks visit each observation
set the same number of times, but in different orders.

major computational bottleneck. Additionally, we demonstrate

empirically that both the information reward and evaluation

complexity are largely decoupled and as such, exploration of

low-complexity walks yields high information rewards and

tighter upper bounds.

II. INFORMATION PLANNING IN GAUSSIAN MODELS

For brevity and clarity of discussion, we restrict ourselves

to HMMs. However, the results easily extend to trees. It also

can generalized to general MRFs by using the method of Liu

et al. (2012) as described in [15]. The underlying dynamical

system of such models can be described by

Xt = At−1Xt−1 + Vt−1 (1)

Yt = CtXt +Wt, (2)

where Xt,Yt, t ∈ {1, . . . , T} are the latent and observed

variables, respectively. In addition, Vt ∼ N (µv,t, Qt), Wt ∼
N (µw,t, Rt) are the respective process and measurement

noises, with Rt being block-diagonal. Let X = {X1, . . . ,XT }
denote the set of latent variables up to time T . Each Xt is a d-

dimensional vector. For each Xt, we define an observation set,

denoted by Vt, where |Vt| = Nt (Nt comparable to d). Each

measurement Yt,u from set Vt is an m-dimensional vector.

In Eq. (2), Yt represents the set of all Nt measurements of

Vt. Therefore, Ct is a Ntm×d matrix, where consecutive m-

row patches correspond to one measurement from Vt. W.l.o.g.,

we assume Vi ∩ Vj = ∅, ∀i 6= j. As shown in Fig. 1a, a

measurement depends at most on q elements of Xt. As a

consequence, Ct is a highly sparse matrix.

Our goal is to characterize approximate solutions to the

following (generally intractable) combinatorial optimization

problem:

O ∈ argmax
{S||S∩Vt|≤kt,∀t}

f(S), (3)

where f(S) is a set function and kt are the selection con-

straints for the t-th set. We restrict ourselves to monotonic

functions and thus it never “hurts” to obtain more measure-

ments. Hence, the inequality constraint becomes tight. To

give an indication of the hardness of problem (3), there are

h1 h1 h1 h1 h1 h2 h2 h3 h4h1 h1 h4 h4 h4 h4· · · · · ·

wj wj+1wj+2 wm· · · · · ·

Fig. 2. Composition of a walk. A walk, w = {w1, . . . , wM}, represents
the particular order observation sets are visited during measurement selection.
A walk segment is a part of the walk that consists of elements from the same
observation set. Here, we have two segments of length 5 corresponding to
sets Vh1

,Vh4
, two segments of length 2 corresponding to sets Vh1

,Vh2
,

and one of length one corresponding to set Vh3
. Vertical arrows indicate

transition points, which are points of transition between different observation
sets.

∏

t

(

Nt

kt

)

=
(

N
k

)T
feasible solutions, which is an extremely

large number as N, k, T grow.

A. Greedy Selection

Greedy methods select elements sequentially conditioned on

the previous selection. A walk w = {w1, . . . , wM} denotes the

particular order in which observation sets are visited. Greedy

selection for a particular walk is defined as

gj = argmax
u∈Vwj

\Gj−1

f(u | Gj−1), (4)

where wj is the observation set index corresponding to the j-th
element of the walk and Gj−1 is the greedy set obtained up to

the previous iteration. The marginal increase in the reward (in-

cremental reward) of incorporating a measurement u in a given

set Gj−1 is denoted as f(u | Gj−1) = f(Gj−1∪{j})−f(Gj−1).
Essentially, at each greedy step we choose the measurement

that maximizes the incremental reward based on past selections

Gj−1. Since we explore at most all N measurements from

a set and there are kT steps of the algorithm, its overall

complexity is O(kTN) as compared to O(
(

N
k

)T
) of the

optimal approach. Here, we use MI as the reward function,

f(S) = I(X ;YS), with the resulting incremental reward

being f(u | Gj−1) = I(X ;Yu | YGj−1
). A walk has length

M =
∑T

t=1 kt. A forward walk is a walk with non-decreasing

order (referred as naı̈ve walk in the previous section). W.l.o.g.,

we assume that each observation set has the same number of

measurements Nt = N .

B. Theoretical guarantees on greedy selection

A greedy solution achieves in the worst case half of the

optimal reward [14]:

f(G) ≥
1

2
f(O).

The above bound, seen differently, serves also as an upper

bound on the optimal reward which cannot exceed twice

the reward of an arbitrary walk. Depending on the problem

structure, different walks yield significantly different rewards.

Of most interest are the walks of highest and lowest reward,

since the first offers the best greedy solution, while the second

gives the lowest bound on the optimal reward. Note that tighter

on-line bounds are available with some computation [14].
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C. Gaussian HMMs

Gaussian models are appealing since information rewards

can be expressed as a function of the covariance of the underly-

ing process. In addition, obtaining values for the measurements

does not have an effect in the selection of measurements,

which makes planning completely independent of the actual

measurement values. As stated, the incremental reward of a

measurement u is defined as

f(u | Gj−1) = I(X ;Yu | YGj−1
)

= H(X | YGj−1
)−H(X | Yu,YGj−1

). (5)

In the Gaussian setting, entropy can be analytically expressed

as

H(X ) =
d

2
(1 + log 2π) +

1

2
log |ΣX |.

Therefore, Eq. (5) becomes

f(u | Gj−1) =
1

2
log

|ΣX |Gj−1
|

|ΣX |{u}∪Gj−1
|
=

1

2
log

|JX |{u}∪Gj−1
|

|JX |Gj−1
|

,

(6)

depending on whether we work with the moment (covariance)

or information (precision) form.

In Gaussian HMMs, covariance updates are as follows:

Σt|t−1 = At−1Σt−1|t−1A
T
t−1 +Qt−1 (7)

Σt|t = Σt|t−1 −GtCtΣt|t−1 (8)

Gt = Σt|t−1C
T
t (CtΣt|t−1C

T
t +Rt)

−1,

where Σt|t−1 = cov(Xt | Y1, . . . ,Yt−1) = cov(Xt | Y1:t−1),
Σt|t = cov(Xt | Y1:t). Eqs. (7), (8) are referred to as the

propagation and update steps, respectively. It is important

to note that pursuant to propagation, the incremental reward

depends only on the local update to the node entropy.1

Consequently, updates to the local covariance (equivalently

precision) matrix fully quantify the information reward with

respect to the full set of latent nodes.

III. COMPLEXITY REDUCTION THROUGH SPARSITY

For a given walk, three primary sources of computational

complexity arise when evaluating the information reward: (i)

propagation, in which the covariance at the next time point is

computed; (ii) exploration, in which the information rewards

of the remaining measurements of the current observation

set are computed to find the best measurement in a greedy

sense; and (iii) updates in which the covariance matrix of

the hidden variable linked to the current observation set

incorporates the selected measurement. The last two sources of

complexity do not depend on the structure of the hidden graph

and hence the underlying analysis extends straightforwardly

to general Gaussian MRFs. Greedy algorithms proceed as

follows; propagation, exploration and update: (i) propagate the

uncertainty given the existing measurements to the next node

in the walk, (ii) explore the available candidate measurements

in the observation set of that node choosing the measurement

1Note that this property is a consequence of conditional independence and
is not restricted to Gaussian models.

with highest incremental reward, as dictated by Eq. (4), and

lastly, (iii) update the uncertainty at that node after selecting

the measurement. We defer the discussion of the propagation

step to Sec. IV as it relies on the sparsity of A and primarily

applies to forward walks. Exploration and updates depend on

the structure of C.

With slight abuse of notation, we denote the m-row portion

of matrix Ct corresponding to measurement Yt,u as Ct(u, :).
After we select a measurement gj at step j as dictated by Eq.

(4), we need to update the uncertainty at the current node of the

walk, Xwj
. For notational consistency with the analysis later

in the text, we will denote the greedily selected measurement

gj by u in the discussion below. From Eq. (8), we see that

the complexity of the update step is O(md2), where d is the

dimensionality of Xwj
, since the computation is dominated

by the term Cwj
(u, :)Σwj |Gj−1

for m ≪ d. Updates at each

iteration yield overall complexity of O(
∑T

t=1 ktmd
2)

kt=k
=

O(Tkmd2). Exploration of one measurement takes O(d3)
time as shown in Eq. (6), since it requires the computation of

the determinant of a d×d matrix. The number of measurements

that should be considered is O(kTN). Therefore, the overall

complexity of exploration is O(TkNd3), which makes it the

dominant term in the computational load.

The above analysis is agnostic to the sparsity of C. Here,

we show that evaluation complexity is dramatically reduced

by taking advantage of this sparsity. Additionally, adopting

the information form yields further significant efficiency. Let

Ic denote the indicator matrix of the non-zero elements of C.

Computation of Ic requires O(Nmd) time or O(TNmd), if

time-varying. We further assume that the largest parent set for

a measurement vector is of size q, where q ≪ d.

A. Reductions during updates

For an m×1 measurement u, denote Iu as Iu = ∨m
i=1Ic(ui, :

), where ui is the ith element of measurement u. That is, Iu
is the d × 1 indicator vector representing the nodes of latent

graph X that generated measurement u. If latent variable Xi

is linked to measurement Yt,u, Iu(i) = 1, while 0 otherwise.

Since a measurement depends on at most q latent variables, we

have that
∑d

i=1 Iu(i) ≤ q. Making use of Eq. (8), the updated

covariance Σ′ with Σ as a prior is:

Σ′ = Σ−ΣC(u, :)T (C(u, :)ΣC(u, :)T +R(u, u))−1C(u, :)Σ.
(9)

By inverting (9), we obtain the updated precision matrix:

J ′ = (Σ− ΣC(u, :)T (C(u, :)ΣC(u, :)T +R(u, u))−1C(u, :)Σ)−1

= Σ−1 + C(u, :)TR(u, u)−1C(u, :)

= J + C(u, :)TR(u, u)−1C(u, :), (10)

where we have made use of the Woodbury matrix identity.

We denote by Ĉu = R(u, u)−1/2C(u, Iu) the m× q matrix

that takes only into account the part of C matrix that is relevant

to the latent variables that generated measurement u. The

matrix square root R(u, u)−1/2 can be recovered in O(m3)
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time. In addition, Ĉu is computed in O(m2q) time. Therefore,

(10) can be rewritten as

J ′ =

[

J(Iu, Iu) J(Iu,¬Iu)
J(¬Iu, Iu) J(¬Iu,¬Iu)

]

+

[

ĈT
u

0T

]

[

Ĉu 0
]

,

(11)

where ¬Iu denotes all the latent variables that are not directly

linked to measurement u. Eq. (11) can be written more

concisely as

J ′(Iu, Iu) = J(Iu, Iu) + ĈT
u Ĉu,

since only the block of J dictated by Iu will be affected by

ĈT
u Ĉu.

The above calculation requires O(mq2) steps. As such, if

m > q, the complexity is dominated by O(m3), while by

O(mq2), otherwise. Compare this to the complexity of the

standard calculation, which is O(md2) per update, resulting

in a speedup on the order of ( d
max{m,q} )

2 per update.

B. Reductions during exploration

Greedy selection for Gaussian models simplifies to

gj = argmax
u∈Vwj

\Gj−1

I(X ;Ywj ,u | YGj−1
)

= argmax
u∈Vwj

\Gj−1

I(Xwj
;Ywj ,u | YGj−1

)

= argmax
u∈Vwj

\Gj−1

log
|Jwj |{u}∪Gj−1

|

|Jwj |Gj−1
|

, (12)

where Jwj |Gj−1
is the precision of Xwj

given observations

YGj−1
. Similarly, Jwj |{u}∪Gj−1

is the precision after the in-

corporation of measurement u.

We can express Jwj |{u}∪Gj−1
as a function of Jwj |Gj−1

by

using Eq. (11):

Jwj |{u}∪Gj−1
= Jwj |Gj−1

+

[

ĈT
wj ,u

0T

]

[

Ĉwj ,u 0
]

.

As we observe in (12), we are only interested in ratios of

determinants to select the next measurement. If we use the

Matrix Determinant Lemma on Jwj |{u}∪Gj−1
we obtain

|Jwj |{u}∪Gj−1
|

= |Jwj |Gj−1
|

∣

∣

∣

∣

Im×m +
[

Ĉwj ,u 0
]

J−1
wj |Gj−1

[

ĈT
wj ,u

0T

]∣

∣

∣

∣

= |Jwj |Gj−1
|

∣

∣

∣

∣

Im×m +
[

Ĉwj ,u 0
]

Σwj |Gj−1

[

ĈT
wj ,u

0T

]∣

∣

∣

∣

Therefore,

|Jwj |{u}∪Gj−1
|

|Jwj |Gj−1
|

= |Im×m + Ĉwj ,uΣwj |Gj−1
(Iu, Iu)Ĉ

T
wj ,u|.

(13)

The term inside the determinant can be recovered in O(m2q)
or O(mq2) time, if m > q or m < q, respectively. In addition,

evaluating the determinant of the above matrix is an O(m3)
operation. So, overall the complexity of calculating the ratios

is O(mmax{m, q}2) as compared to that of the standard

calculation which is O(d3).

TABLE I
SPEEDUPS ACHIEVED BY SPARSITY

Speedup Arbitrary Walk
Forward Walk
(see Sec. IV)

propagation – O(d/p)

m > q
exploration O(N) O((d/m)3)
update O((d/m)2) O(d/q)

m < q
exploration O(N) O((d/q)3)
update O((d/q)2) O(d/q)

Unfortunately, as Eq. (13) implies we need to know

Σwj |Gj−1
at the begining of each greedy step for the considera-

tion of each measurement’s information content in set Vwj
. As

we showed before, it is much more beneficial to evaluate the

precision rather than the covariance matrix in an update step.

However, the covariance of Xwj
given measurements Gj−1 can

be recovered by inverting Jwj |Gj−1
from the previous step,

in O(d3) time. We need to do the inversion at every greedy

step resulting in a total complexity of O(Tkd3). After we

obtain the covariance matrix, the evaluation of the reward of

each measurement is accomplished in O(mq2) time (assuming

m < q), resulting in a total of O(TkNmq2) for all iterations.

Assuming that m, q ≪ d,N , the overall complexity of explo-

ration is dominated by O(Tkd3) as opposed to O(TkNd3) of

the standard calculations. For example, if d = N = 104, the

savings are on the order of 104. We summarize the gains we

obtain in the update and exploration steps by making use of

sparsity in Table I.

IV. FORWARD WALKS

Forward walks, walks with non-decreasing orders, are a

special case as planning is accomplished solely with forward

propagation. While the evaluation complexity of such walks

is low, they tend to produce significantly lower information

rewards. However, such walks are still of use in that they

provide tighter upper bounds on the optimal solution. We

assume that the dynamics matrix A is sparse. In other words,

each row has at most p non-zero elements. The sparsity in the

dynamics matrix A affords a computational advantage for such

walks. It is straightforward to see that propagation requires

O(d3) time. We can take advantage of sparsity, by storing the

indicator matrix Ia, which contains the non-zero elements of

each row of A. The above operation requires O(d2) time, or

O(Td2) if it is a time-varying model. Assuming we know the

covariance Σt−1|t−1, we can evaluate the elements of Σt|t−1

as follows:

Σ1(i, :) = At−1(i, Ia(i, :))Σt−1|t−1(Ia(i, :), :), ∀i

Σ2(:, ℓ) = Σ1(:, Ia(ℓ, :))At−1(ℓ, Ia(ℓ, :))
T , ∀ℓ

Σt|t−1 = Σ2 +Qt−1,

where Σ1,Σ2 are temporary d × d matrices. The above

evaluation completes in O(pd2) time, where p≪ d and so is

much faster than O(d3) of the standard calculation. Overall,

we need only propagate at the transition points, which leads
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to an overall complexity of O(Tpd2). Interestingly, the worst-

case complexity of a forward walk does not depend on the

composition of the walk but rather the length of the chain.

Here, the information form provides no computational ad-

vantage since Kalman filtering is sufficient for uncertainty

propagation. Furthermore, matrix inversion is unnecessary for

measurement selection. From Eq. (12), if we denote by N (u)
the (latent) neighbors of measurement u we have that

gj = argmax
u∈Vwj

\Gj−1

I(Xwj
;Ywj ,u | YGj−1

)

(a)
= argmax

u∈Vwj
\Gj−1

I(Xwj ,N (u);Ywj ,u | YGj−1
)

= argmax
u∈Vwj

\Gj−1

log
|Σwj |Gj−1

(Iu, Iu)|

|Σwj |{u}∪Gj−1
(Iu, Iu)|

,

where (a) holds since conditioned on the neighbors of mea-

surement u, the remaining hidden variables gain no infor-

mation from u. If we know Σwj |Gj−1
, Σwj |{u}∪Gj−1

(Iu, Iu)
can be evaluated from Eq. (8) by just focusing on the block

that corresponds to the (latent) parents Iu. If m > q, the

dominant calculation is the inversion of an m × m matrix,

which is O(m3). If m < q, the dominant operation is the

evaluation of the determinant of a q × q matrix, which is

O(q3). The complexity of each exploration step using the

standard approach is O(d3). Lastly, if we take advantage of

sparsity in the moment form, the complexity per update is

O(mqd), while the standard update complexity is O(md2).
Table I summarizes these results. By way of example, if

m = p = 10, q = 5, d = 104, we gain a speedup of order

109 over the standard approach.

V. SINGLE NODE DECOMPOSITIONS

This section discusses the savings we obtain in the propaga-

tion step by taking advantage of a variant of belief propagation

that we present below. The update and exploration steps

discussed in Sec. III assumed the knowledge of Jwj |Gj−1

(or Σwj |Gj−1
) at each greedy step, which is obtained during

propagation. While the analysis below is restricted to Gaus-

sian HMMs, it extends to trees and general Gaussian MRFs

straightforwardly.

The naı̈ve way to do this is to first propagate forward the

covariance up to the node corresponding to the first element of

the walk (w1) and greedily select the measurement from that

node. In general, having selected a measurement, we need to

propagate forward from the current node up to the maximum

walk element encountered so far and then smooth back to the

node corresponding to the next walk element. Each filtering

step requires O(d3) time assuming kt is comparatively smaller

than d. Similarly, each smoothing step requires O(d3) steps.

Filtering is bounded by O(Td3), while smoothing is bounded

by O
(

(T − wj+1)d
3
)

. In the worst case, wj 6= wj+1, ∀j, so

we need to use Kalman filtering and smoothing at every step

of the greedy algorithm. Since, there are kT steps (assuming

kt = k), the worst-case overall complexity is O(kT 2d3). In

the above approach, the farther the next walk element is from

the node with the maximum index encountered so far, the

greater the number of unnecessary computations. However,

the increase in the total information reward only depends on

the covariance update to the node corresponding to the next

walk element

I(X ;Ywj+1,u | YGj
) = I(Xwj+1

;Ywj+1,u | YGj
)

=
1

2
log

|Σwj+1|Gj
|

|Σwj+1|{u}∪Gj
|
=

1

2
log

|Jwj+1|{u}∪Gj
|

|Jwj+1|Gj
|

.

Consequently, computations may be focused on the single

node that corresponds to the next walk element wj+1 after

having properly updated its uncertainty from the previous step.

Using the information form is preferrable since uncertainty

propagation from the current node wj to the next walk element

wj+1 is accomplished via a modified version of the Gaussian

belief propagation (GaBP) as we describe in the next section.

A. Adaptive BP

It is well known that a Gaussian HMM may be described

by node and edge potentials as

ϕt(xt) = exp

(

−
1

2
xTt Jt,txt + xTt ht

)

ψt,t+1(xt, xt+1) = exp
(

−xTt Jt,t+1xt+1

)

, where

ht = Q−1
t−1µv,t−1 −AT

t Q
−1
t µv,t + CT

t R
−1
t (yt − µw,t)

(14)

Jt,t = Q−1
t−1 +AT

t Q
−1
t At + CT

t R
−1
t Ct (15)

Jt,t+1 = −AT
t Q

−1
t . (16)

where node ϕt and edge potentials ψt,t+1 have information

parameters (ht, Jt,t), (0, Jt,t+1), respectively. The “forward”

and “backward” passes take the form of belief propagation

messages [16], [17]:

Forward Pass

ht→t+1 = −JT
t,t+1(Jt,t + Jt−1→t)

−1(ht + ht−1→t) , ∀t
(17)

Jt→t+1 = −JT
t,t+1(Jt,t + Jt−1→t)

−1Jt,t+1 (18)

Backward Pass

ht→t−1 = −Jt−1,t(Jt,t + Jt+1→t)
−1(ht + ht+1→t) , ∀t

(19)

Jt→t−1 = −Jt−1,t(Jt,t + Jt+1→t)
−1JT

t−1,t (20)

where J0→1 = 0, h0→1 = 0, JT+1→T = 0, hT+1→T = 0.

Finally, the marginals Xt given all the measurements, Xt |
Y1:T ∼ N−1(ht|T , Jt|T ), are obtained as:

ht|T = ht + ht−1→t + ht+1→t

Jt|T = Jt,t + Jt−1→t + Jt+1→t.

5



1) Precision updates with standard BP: Assuming noise is

independent across different measurements within an observa-

tion set, Rt is an Ntm × Ntm block-diagonal matrix. Each

block is of size m×m. Incorporating an m×1 measurement u
from set Vt, only affects ht, Jt,t according to Eqs. (14), (15),

(16) as:

h′t = ht + Ct(u, :)
TRt(u, u)

−1(yt(u)− µw,t(u))

J ′
t,t = Jt,t + Ct(u, :)

TRt(u, u)
−1Ct(u, :).

The above operation completes in O(mmax(m, q)2) time.

Since only the node potential of the current walk element

(hwj
, Jwj ,wj

) changes after the incorporation of measurement

gj from observation set Vwj
, we need only propagate messages

forward from node wj to the end of the chain and backwards

from node wj back to the beginning of the chain, which

takes exactly T −1 steps. Each forward/backward pass results

in O(d3) complexity and hence the overall complexity is

O(Td3). In order to find the updated covariance of the next

walk element Σwj+1|Gj
for use in Eq (13) (if we replace j by

j + 1), we need to invert the precision matrix Jwj+1|Gj
,

Jwj+1|Gj
= Jwj+1

+ Jwj+1−1→wj+1
+ Jwj+1+1→wj+1

,

which adds another O(d3) complexity.

2) Precision updates with adaptive BP: As our reward

computation only requires the covariance of the next walk

element, we can further reduce the complexity by restricting

updates to the nodes between the current and next walk

element. Namely, if wj < wj+1, we only need to update the

forward messages from wj to wj+1. Similarly, if wj > wj+1,

we only need to update the backward messages from wj to

wj+1. We call this modified version of belief propagation (BP),

adaptive BP.

B. Description of the method

At initialization (G0), we evaluate all node potentials assum-

ing no measurements are available propagating messages along

the entire chain in both directions. As a new measurement is

selected (gj) from set Vwj
, we compute and update messages

from Xwj
to Xwj+1

. This results in correct node marginals

along that path. Within same walk segment, (wj = wj+1),

propagation is unnecessary and we need only update the node

potential (hwj
, Jwj ,wj

) Please, see Alg. 1 for details. Since

relevant node potentials are correct at every iteration, and the

message from wj − 1 to wj (if wj < wj+1), or wj + 1 to wj

(if wj > wj+1) is correct, then the messages from wj to wj+1

are guaranteed to be correct as well. Messages from wj − 1
to wj (or wj + 1 to wj) are also guaranteed to be correct,

since during the previous walk step, from wj−1 to wj , that

message was either not included in the path from wj−1 to wj

and was unchanged or has been correctly updated (as part of

the directed message schedule from wj−1 to wj). Please, see

Fig. 3 for an example flow of the algorithm.

At every iteration, we need to update exactly

|wj+1 − wj | messages. Therefore, the overall complexity

is O
(

∑M−1
j=1 |wj+1 − wj |d

3
)

. If we denote by

ℓ̄ , 1
M−1

M−1
∑

j=1

|wj+1 − wj |, the average length of the

path connecting two nodes of neighboring walk elements,

the average-case complexity becomes O
(

kT ℓ̄d3
)

. Compare

this with the complexity of the naı̈ve approach which is

O
(

kT 2d3
)

. If ℓ̄ ≪ T , we achieve a speedup on the order

of O(T/ℓ̄) compared to Kalman filtering/smoothing or

standard BP. Small ℓ̄ implies that there are only short jumps

in the walk. In other words, it is “cheaper” to obtain the

marginal of the node of the next walk element when there

is a small distance from the current node. On the other

hand, nodes farther from the current walk element generally

give higher information gain at the cost of more intensive

computation. Thus, there is a trade-off between obtaining

higher incremental information rewards and reducing the

complexity of computations.

Algorithm 1 ADAPTIVE BP

Initialization (no measurements)

if j = 1 then

{ht→t+1, Jt→t+1}
T−1
t=1 , {ht→t−1, Jt→t−1}

T
t=2 from Eqs.

(17), (18), (19), (20).

end if

Update node potential of the current walk element

hwj
= hwj

+Cwj
(gj , :)

TRwj
(gj , gj)

−1
Ywj

(gj)−µw,wj
(gj)

Jwj ,wj
= Jwj ,wj

+ Cwj
(gj , :)

TRwj
(gj , gj)

−1Cwj
(gj , :)

Update messages between Xwj
and Xwj+1

if wj < wj+1 then

(ht→t+1, Jt→t+1) from Eqs. (17), (18),

t = wj , . . . , wj+1 − 1
else if wj > wj+1 then

(ht→t−1, Jt→t−1) from (19), (20),

t = wj , . . . , wj+1 + 1
end if

Evaluate the parameters of p(Xwj+1
| Gj)

hwj+1|Gj
= hwj+1

+ hwj+1−1→wj+1
+ hwj+1+1→wj+1

Jwj+1|Gj
= Jwj+1,wj+1

+ Jwj+1−1→wj+1
+ Jwj+1+1→wj+1

VI. COMPUTATION WALK TREE

The number of different walks for this class of problems is
(
∑

T
t=1

kt)!

k1!k2!···kT ! , and hence consideration of all walks is intractable.

However, many walks share subsets of elements, suggesting

redundant computations. For instance, if a partial walk is

comprised of ℓ1, . . . , ℓT measurements from sets V1, . . . ,VT ,

there are
(
∑

T
t=1

(kt−ℓt))!
(k1−ℓ1)!(k2−ℓ2)!···(kT−ℓT )! walks that start with this

partial walk. Greedy selection to time T is the same for all the

different walks. We can create at most T tree-like structures

with roots 1, 2, . . . , T . Each path from a root to a leaf would

represent a walk satisfying the constraints. If a partial walk has

been evaluated starting from observation set Vt and ending in

set Vwj
, then we can evaluate any path of the subtree with

root wj without repeating any of the computations of the path

from root t to node wj , as shown in Fig. 4.
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#1 1 2 3 4 5 6 7 8

#3 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8#4

#0 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8#2

Fig. 3. Adaptive BP. Solid thick node represents the node of current walk
element under consideration, while the node with double stroke the next one.
Dashed nodes represent nodes whose measurements have been obtained in the
past. The current node’s potentials are updated after the incorporation of a
measurement. Thick arrows represent the messages that are transmitted in the
current iteration. Solid and strikethrough arrows represent correct messages
and messages not being properly updated, respectively. Gray bands encompass
all the nodes whose marginals can be correctly computed. During initialization
(iter #0), all node potentials, forward and backward messages are computed.
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Fig. 4. Computation Walk Tree. Each path from a root to a leaf represents
one of the walks that satisfy the same set of constraints. If a partial walk has
been evaluated (e.g., one starting from set Vt and ending in set Vwj

), there
is no need to repeat the computations of this part for all the walks that start
from set Vt and pass through set Vwj

.

VII. EXPERIMENTAL RESULTS

We consider a synthetic tracking experiment. The primary

goal of our experiments is to demonstrate the utility of the

method from a computational perspective. We additionally

observe that in some cases, information rewards - depending

on the structure of the problem - may be decoupled from

the complexity of walk. In such cases, exploration may be

restricted to low-complexity walks while yielding high infor-

mation rewards. The properties under which this condition

arises remains an open question.

In our setup, there are three objects. Two of the objects move

away from the third one. Each object has a 6-dimensional

states, px, py, pz, vx, vy, vz representing the positions and ve-

locities along the three axes. We consider the following linear

state-space model:

Xt = At−1Xt−1 + Vt−1, ∀t ∈ {1, . . . , 20}

Yt = CtXt +Wt ,

where At−1 captures linear dynamics, Vt−1 ∼ N (0, Qt−1)
is driving noise and Wt ∼ N (0, Rt) is measurement noise.

0 100 200 300 400 500 600 700 800 900 1000
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14.8
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number of messages
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random walks

segm walks (len: 2)

segm walks (len: 3)

segm walks (len: 4)

segm walks (len: 5)

forward walk

worst complexity walk

maximum IG walk

Fig. 5. Empirical Analysis of Structured and Unstructured Walks.

The figure compares information rewards versus computation complexity (as
quantified by number of messages) for walks of different minimum size
segment (magenta:1, brown:2, yellow:3, purple:4, blue:5). As we see, the
distribution of rewards is similar to all cases, but the evaluation complexity is
significantly lower for walks with harder constraints on the minimum segment
length.

Potential measurements are available for each hidden variable

(position, velocity), which accounts to 18 measurements per

time point (6 per object) of which we are may select six (at

each time point). We consider five different types of walks

with the following minimum sizes of a walk segment; ℓmin ∈
{1, 2, 3, 4, 5}. By minimum size, we mean that for every set Vt,

there is a walk segment with size at least ℓmin.2 In Fig. 5 we

compare rewards of different walks to their complexities. As

expected, the forward walk (green circle) has lowest complex-

ity and lowest reward. Interestingly, even though walks with

larger minimum segment sizes (blue, purple) result in much

lower complexities, they have comparable rewards to those of

lower minimum segment sizes (brown, magenta) and higher

complexity. Additionally, the walk with the maximum reward

which belongs in one of the highest complexity clusters is not

significantly higher than the maximum from lower complexity

clusters.

We also examine speed up due to sparsity by consid-

ering 200 moving objects with different degrees of corre-

lated motion. The hidden dimension in this case is d =
1200. We consider different observation sizes, constituting

{10%, 25%, 50%, 75%, 100%} of the hidden dimension and

different degrees of sparsity in the measurement model. Fig.

6 shows the efficiency gain as a function of sparsity and

observation size when using the information form. Here, color

indicates factor of speedup, the maximum being 1400.

Lastly, we examine the advantage of adaptive BP. We

construct 10 Markov chains of varying length (from T = 10
to T = 300) and compare adaptive BP to the standard Kalman

filtering and smoothing. In Fig. 7a, certain speedups are

obtained converging to a single number for reasons explained

in the caption. We also construct multiple walks with specified

average distance between consecutive walk elements, (1–

2A walk segment is a subset of the walk where all elements are the same.
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Fig. 6. Speedup by taking advantage of sparsity. The figure shows the
speedup we gain by taking sparsity into account and working with the
information form. We explore the speedup for different degrees of sparsity
defined as 1 − q/d and different ratios of observation sizes N , to hidden
dimension d. As expected, we see that the gains are more imminent as
observation size and sparsity grows.
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Fig. 7. Sparsity and different walks. (a) Efficiency gains as the length
of the chain T increases. Gains stabilize around a single number due to the
construction of the walks. Since we choose the same number of measurements
from each observation set, and observation sets are sampled uniformly with
probability 1/T , the mean distance between two consecutive points is T/3.
Kalman filtering and smoothing send 2T messages on average at every
iteration, since we need to propagate to the end of the chain and then smooth
back to the node that corresponds to the next walk element wj+1. Therefore,

the expected speedup converges to a number close to 2T
T/3

= 6. (b) As the

average distance between consecutive walk elements decreases, the speedups
increase.

5, 5–10, 15–20, 50–60) for a chain of length T = 100.

As the average distance between consecutive walk elements

decreases, the greater the advantage of Adaptive BP.

VIII. CONCLUSION

We have considered the problem of efficient evaluation of

information rewards in Gaussian HMMs. The analysis extends

straightforwardly to trees and with some modifications to

general MRFs. Naı̈ve evaluation of such rewards is gener-

ally prohibitive for all but forward walks. However, in the

case of sparse measurement matrices, a detailed analysis has

shown that significant computational savings are available.

Consequently, in such situations it is computationally feasible

to explore multiple plans leading to improved information

rewards and tighter upper bounds on the optimal reward.

Furthermore, our experimental results reveal that in some cases

the information reward can be decoupled from the complexity

of the walk. As a result, exploration can be restricted to low-

complexity walks while still yielding high information rewards

that are guaranteed to be within a computable factor of the

(intractable) optimal solution.
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